Conception, construction et évaluation d'un indice d'inflation sous-jacente pour l'économie Vietnamiennne

Thèse soutenue à Rennes
le 14 avril 2015
devant le jury composé de :
Christian AUBIN
Professeur à l'Université de Poitiers / rapporteur
Jean-François GOUX
Professeur à l'Université de Lumière Lyon 2 / rapporteur
Jean-Jacques DURAND
Professeur à l'Université de Rennes1 / Président
Christophe TAVERA
Professeur à l'Université de Rennes 1 / directeur de thèse
Thi Minh Ly PHAN
Professeur associé à l'Université de Hué / co-directeur de thèse
L’Université de Rennes I n’entend donner aucune approbation ni improbation aux opinions émises dans cette thèse : ces opinions doivent être considérées comme propres à leurs auteurs.
À ma grande famille,

À mon mari Nguyen et mes deux fils,
Sommaire

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sommaire</td>
<td>i</td>
</tr>
<tr>
<td>Remerciements</td>
<td>vi</td>
</tr>
<tr>
<td>Introduction générale</td>
<td>1</td>
</tr>
<tr>
<td>1. Aperçu générale de l’inflation du Vietnam</td>
<td>1</td>
</tr>
<tr>
<td>1.1. Le Vietnam : une économie avec des taux d’inflation élevés</td>
<td>1</td>
</tr>
<tr>
<td>1.2. L’inflation au Vietnam est particulièrement élevée par rapport à l’inflation des autres pays de la région Asie-Pacifique</td>
<td>3</td>
</tr>
<tr>
<td>1.3. L’inflation élevée : les causes et les conséquences</td>
<td>5</td>
</tr>
<tr>
<td>1.4. Une base de données de l’inflation encore très limitée et hétérogène</td>
<td>13</td>
</tr>
<tr>
<td>2. Motivation de la recherche</td>
<td>16</td>
</tr>
<tr>
<td>3. Objectif de la recherche</td>
<td>22</td>
</tr>
<tr>
<td>4. Méthodologie de la recherche</td>
<td>23</td>
</tr>
<tr>
<td>5. Structure de la thèse</td>
<td>25</td>
</tr>
<tr>
<td>Chapitre 1</td>
<td>27</td>
</tr>
</tbody>
</table>
Sommaire

Inflation sous-jacente: Présentation et Utilité du concept 27

1. Introduction ... 27

2. Une première approche : l’inflation sous-jacente en tant qu’inflation persistante .. 30

3. Une seconde approche: l’inflation sous-jacente en tant qu’inflation généralisée ... 37

4. Nécessité du concept d’inflation sous-jacente ... 45

5. Conclusion ... 49

Chapitre 2 .. 51

Les approches statistiques .. 51

1. Introduction ... 51

2. La méthode de la moyenne tronquée de Bryan et Cecchetti.............. 53

3. Les mesures proposées par Laflèche et al. .. 57

4. Le modèle à facteur dynamique ... 64

5. Plusieurs autres méthodes moins fréquentes .. 70

6. Application au cas du Vietnam ... 72

6.1. Base de données ... 72

6.2. Quelques statistiques représentatives de l’inflation au Vietnam 75
6.3. Estimation de l’inflation sous-jacente par les mesures d’exclusion 83

6.4. Estimation de l’inflation sous-jacente par la moyenne tronquée 88

6.5. Estimation de l’inflation sous-jacente par la médiane et la médiane pondérée ..90

6.6. Estimation de l’inflation sous-jacente par la méthode des pondérations réduites ...91

6.7. Estimation de l’inflation sous-jacente par le modèle à facteur dynamique 93

7. Conclusion ..99

Chapitre 3 ...110

Les approches économétriques ...110

1. Introduction ..110

2. Le modèle SVAR de Quah et Vahey ...114

2.1 Le cadre économétrique du modèle SVAR de Quah et Vahey 114

2.2 Revue de la littérature ...118

2.3 Estimation et discussion ...122

3. Le modèle à tendances communes ...133
Sommaire

3.1 Le modèle à tendances communes appliqué à l’estimation de l’inflation sous-jacente133

3.2 Méthodologie économétrique ..136

3.3 Estimation et discussion ...142

4. Le modèle à composantes non observées152

4.1 Le courbe de Phillip et l’inflation sous-jacente152

4.2 Méthodologie d’estimation..159

4.3 Estimation et discussion..163

5. Conclusion ..172

Chapitre 4..175

Évaluation de la performance des indices d’inflation sous-jacente.....175

1. Introduction ...175

2. Propriétés théoriques et empiriques des indices d’inflation sous-jacente 178

2.1 Les propriétés théoriques ...178

2.2 Les performances des indices d’inflation sous-jacente du Vietnam 184

3. La capacité prédictive des indices d’inflation sous-jacente194

4. Conclusion ..204

Conclusion générale..222
Sommaire

1. Résultats intuitifs de la thèse ...224
2. Objectifs visés par cette thèse ...226
3. Perspectives ..229
Bibliographie ...231
Liste des figures ...242
Liste des tableaux ..245
Liste des annexes ..248
Remerciements

C'est avec un grand plaisir que je remercie les personnes, qui de près ou de loin, ont contribué à la réalisation de cette thèse.

Tout d'abord, je tiens à remercier Monsieur Christophe Tavéra, pour la confiance qu'il m'a accordée dès le début et le long des trois années, pour son encouragement dans les moments difficiles et en particulier pour sa qualité d'encadrement, son aide et sa disponibilité même pendant les weekends et les vacances. Sans lui, ce travail n'aurait pas vu le jour.

Je tiens à remercier Madame PHAN Thi Minh Ly pour son soutien inestimable pendant mes périodes de travail à l'École des sciences économiques – Université de Hué au Vietnam.

Je voudrais exprimer toute ma gratitude à:

Monsieur Jean Jacques Durand pour les nombreuses discussions très enrichissantes que nous avons eues et qui m'a fait l'honneur de présider le Jury;

Messieurs Christian Aubin et Jean-François Goux pour tous les soins qu'ils ont apportés dans leurs charges de rapporteur;

L'AUF pour le soutien financier qu'elle a apporté à cette thèse;

Toutes les personnes au CREM - Rennes 1 pour la très bonne ambiance de travail, avec qui j'ai partagé de beaux moments de discussion.

Enfin, j'exprime toute ma reconnaissance à mes parents, à mon époux, nos fils et mes amis proches pour leur encouragement et leur soutien éternel, malgré la distance, pendant mes très longs séjours à l'étranger toutes ces années.
Introduction générale

1. Aperçu générale de l’inflation du Vietnam

1.1. Le Vietnam : une économie avec des taux d’inflation élevés

Les économistes s’intéressent à l’inflation du Vietnam depuis l’année 1986 où l’ex-économie planifiée s’est transformée en une économie de marché. Pendant les années 80 et au début des années 90, l’économie vietnamienne est marquée par une période d’hyperinflation. Durant cette période le taux d’inflation se maintient à un niveau élevé avec un pourcentage à deux voire trois chiffres. En 1986 l’inflation a même atteint le niveau de 700%. Cette situation de haute inflation dura pendant plusieurs années. À partir du milieu des années 90, les pressions inflationnistes ont diminué, et la dernière année de cette décennie, l’économie vietnamienne est tombée en déflation ou en situation d’inflation faible. Durant trois ans, de 1999 à 2000, le taux d’inflation resta situé dans une fourchette de 0.1% à -0.6%.

1 Les données historiques de l’inflation du Vietnam sont sélectionnées à partir des rapports périodiques de la Banque centrale et du Comité économique de l’Assemblée Vietnamienn
La période « d’or » où l’inflation resta stable à un niveau inférieur à 5% ne dura que pendant 5 ans, de 2000 à 2004. Cependant, à la fin de cette période, l’inflation vietnamienne a traversé une nouvelle phase durant laquelle elle fluctua de manière forte voire très forte et fut pleine de surprises. De la fin de l’année 2004 jusqu’à présent le niveau des prix a augmenté de façon spectaculaire, et spécialement, en 2008, où l’inflation a atteint un sommet, avec le taux le plus élevé de ces 10 dernières années (plus de 28%). Fin de 2010, malgré tous les efforts déployés par la Banque centrale afin de contrôler l’inflation, celle-ci a encore atteint des sommets, puis a eu des effets négatifs et graves sur l’économie. À ce jour, bien que l’inflation soit sous contrôle et reste stable (mais encore à un niveau élevé), le risque d’une forte inflation reste encore latent et menace la stabilité et la croissance économique du Vietnam.

Figure 1: ÉVOLUTION HISTORIQUE DE L’INFLATION AU VIETNAM

L’évolution historique de l’inflation au Vietnam se reflète intuitivement à travers le graphique 1.

2 En ce qui concerne les mesures de l’inflation au Vietnam, il y a un point à remarquer. L’évolution de l’inflation peut être vue à travers de nombreux indices de prix, dont l’IPC et le déflateur du PIB sont les plus connus. Dans la plupart des cas, l’inflation calculée de l’IPC (notée l’inflation d’IPC) et l’inflation calculée du déflateur du PIB (notée l’inflation du PIB) fluctuent dans les même directions, et aux mêmes rythmes. Le problème qui se pose, dans le cas du Vietnam, est que le déflateur du PIB semble amplifier le niveau de prix, comparativement à l’IPC. Ceci n’est pas un problème important mais doit
Introduction générale

L’inflation n’est pas seulement élevée, elle varie également fortement. L’écart-type moyen du taux d’inflation entre les années 1996 :01 et 2013 :09 est d’environ 6.27 ce qui peut en partie expliquer la difficulté à la contrôler et à prévoir l’inflation du Vietnam.

1.2. L’inflation au Vietnam est particulièrement élevée par rapport à l’inflation des autres pays de la région Asie-Pacifique

être noté car il est contraire à ce qui est connu dans la littérature où il est dit que le déflateur du PIB tend généralement à sous-estimer l’inflation. Ce phénomène peut avoir pour origine l’excédent d'importation qui a eu lieu pendant des années au Vietnam, de 1995 à 2007. Dans le contexte d’une économie en mutation vers une économie de marché, la fenêtre d'importation était plus ouverte. Un nombre important de produits étrangers sont importés pour remplacer les produits domestiques dont les prix étaient encore très élevés (la capacité de production était encore faible donc le coût de production était comparativement haut). Dans les années suivantes, les prix de l’importation diminuent, grâce principalement aux accords commerciaux entre le Vietnam et les autres pays. L’IPC tient compte des prix de l’importation mais le déflateur n’en tient pas compte et tend donc à surestimer l’inflation par rapport à l’IPC.

Ceci n’est pas un problème grave, mais dans les analyses de l’inflation, il faut choisir d’utiliser qu’un seul des deux indices. Dans le cadre de cette étude, l’indice de l’inflation calculée de l’IPC a été utilisé. Ce choix a été guidé par la disponibilité et la qualité des données.

Graphique : l’inflation calculée de l’IPC et l’inflation calculée du déflateur du PIB au Vietnam
Les niveaux des records historiques de l’inflation du Vietnam ont dépassé ceux de la plupart des autres pays de la région Asie-Pacifique à partir de la transformation de l’économie (1986) jusqu’à maintenant. Ce phénomène se répète au moins une fois tous les 5 ans, durant la période allant de 1991 à 2012. Un exemple typique est que le taux d’inflation du Vietnam a atteint un niveau de 18% en 2011 et de 6.8% en 2012, des niveaux qui sont supérieurs au taux de 4% d’inflation qui est généralement connu dans les pays comme la Chine, les Philippines, la Malaisie et la Thaïlande. Ce phénomène est illustré sur la Figure 2 suivante.

Figure 2: COMPARAISON DE L’INFLATION AU VIETNAM ET AUX AUTRES PAYS

Si on examine la corréléation entre l’inflation et la croissance économique, la situation de l’inflation du Vietnam est encore plus sérieuse. Par exemple, pendant la période allant de 2008 à 2012, le taux de croissance du Vietnam est proche de 5.9% par an et le taux d’inflation annuel est de 12.6%, tandis que ces taux sont respectivement de 9.3% par an et de 3.3% en Chine. Dans le cas du Vietnam, le taux de croissance est comparativement plus bas.
que le taux d’inflation. Ce phénomène devient plus clair si on regarde sur une période plus longue, (20 ans, de 1991 à 2010). Le taux de croissance moyen du Vietnam se situe autour de 7.4% par an et le taux d’inflation annuel autour de 11%, tandis que ces taux sont respectivement de 10.5% par an et de 4.8% en Chine. Durant ces 20 années, la Chine a développé un taux de croissance qui est le double du taux de croissance du Vietnam mais son niveau d’inflation n’est égal qu’à environ la moitié de celui-ci du Vietnam.

1.3. L’inflation élevée : les causes et les conséquences

Après la guerre, pour répondre aux besoins en force de travail qui ont fortement augmenté, le Vietnam a du favoriser une croissance économique rapide. Malheureusement, la conséquence de cette stratégie qui a été maintenue pendant une période trop longue, a été un rythme d’inflation élevé. L’économie a fonctionné au delà de son potentiel (notamment dans la période après 2004), la pénurie d’emplois a été surmontée, le déficit de production s’est réduit, mais ceci a créé une pression à la hausse sur l’inflation. De plus, pour encourager la croissance, la Banque centrale a fait augmenter continuellement l’offre de crédit avec un rythme beaucoup plus soutenu que le taux de croissance économique. Cela a également contribué à une explosion de l’inflation.

Du fait de cette inflation élevée, l’économie est tombée dans une spirale de stagnation et de crise macroéconomique. L’inflation anticipée a également augmenté. La bulle du marché financier (marché qui est encore très jeune) et la bulle immobilière se sont alors tendues davantage. Les prix dans ces marchés étaient anormalement élevés. Les anticipations d’inflation ont continué à être
nourries. En outre, la balance commerciale était toujours déficitaire et le marché financier fluctuait fortement. De plus, le déficit budgétaire augmentait et l’efficacité de l’investissement restait faible. Tous ces facteurs ont causé une pression importante sur l’inflation.

Comme le Vietnam est une économie largement basée sur agriculture, l’évolution de l’inflation est également fortement affectée par les chocs d’offre. La preuve en est que l'évolution de l'indice des prix à la consommation a suivi de près l'évolution des groupes des produits alimentaires. Durant la période de 1999 à 2001, il y a eu une grande chute de l’inflation. Celle-ci n’a pas pour origine les stratégies de la politique monétaire mais plutôt la diminution continue des prix domestiques et des prix d’exportation des produits de l’agriculture (voir le tableau 1 suivant).

Tableau 1: INFLATION ET INFLATION DES PRODUITS ALIMENTAIRES PENDANT LA PÉRIODE DE 1999 À 2001

<table>
<thead>
<tr>
<th>Année</th>
<th>Inflation</th>
<th>Inflation des prix des produits alimentaires</th>
</tr>
</thead>
<tbody>
<tr>
<td>1999</td>
<td>0.1%</td>
<td>-6%</td>
</tr>
<tr>
<td>2000</td>
<td>-0.6%</td>
<td>-9.6%</td>
</tr>
<tr>
<td>2001</td>
<td>0.8%</td>
<td>-14.2%</td>
</tr>
</tbody>
</table>

Jusqu’à présent, l’inflation est sous-contrôlée et reste stable autour de 6% à 7%. Cependant, pour le Vietnam, l'intégration internationale est en train d’être renforcée, les engagements de l'Organisation mondiale du commerce sur

3 En fait il y a eu une réduction du déficit pendant ces années (il passe de -11.8% du PIB en 2008 à -6.2% en 2009 puis à -4% du PIB en 2010)
la libéralisation financière sont aussi en cours d’être promus tandis que l’environnement macroéconomique reste encore instable. Ceci peut rendre sceptique quant à la stabilité actuelle de l’inflation.

L’évolution de l’inflation durant la période d’observation de cette thèse, (de 1996 à aujourd’hui), a suivi étroitement les chocs externes qui affectent l’économie Vietnamienne. Ce sont ces chocs qui sont à la base des politiques économiques que le Gouvernement et la Banque centrale du Vietnam ont effectuées pendant cette période. On peut ainsi citer :

- la crise financière asiatique de 1997
- la crise pétrolière mondiale de 2007
- la crise financière mondiale de 2008

Afin de faire face à de tels chocs négatifs, le Gouvernement a effectué des plans d’intervention dont les politiques monétaires et budgétaires sont les principaux outils. Au départ, ces politiques avaient également pour but de réduire les effets négatifs de ces chocs, mais, elles ont été sur-utilisées et ont eu des effets indésirables sur l’économie. Elles ont agi comme des chocs politiques négatifs sur l’économie.

Introduction générale

L’histoire des politiques économiques et de l’inflation pendant cette période peut être divisée en 5 sous-périodes.

- Première période (de 1999 au milieu de l’année 2006): *les politiques monétaires et budgétaires laxistes*

Rassuré par ces résultats préliminaires, le Gouvernement a prolongé cette stratégie de politique économique pour les années suivantes. De plus, le contexte macro-économique du pays et du monde qui devenait assez stable à cette époque est aussi un autre facteur favorable pour la prolongation de cette stratégie, jusqu’en 2006. De ce fait, l’économie a connu une croissance continue mais l’inflation a également augmenté. Pourtant, cette augmentation de l’inflation qui dura plusieurs années n’était pas trop grave (moins de 5% par an).
Cependant, à partir de 2004, les flux des capitaux étrangers ont commencé à entrer de manière importante dans l'économie vietnamienne. Ceci a renforcé la croissance économique et le PIB a même dépassé son niveau potentiel\(^4\). Simultanément, un excès de capitaux est apparu sur les marchés domestiques. Tous ces facteurs ont contribué à la montée soudaine de l'inflation. Il y a eu des moments où le pourcentage du taux d'inflation a même atteint un nombre à deux chiffres.

Du fait des pressions inflationnistes et l’excès de capitaux étrangers dans l’économie, la Banque centrale a resserré sa politique monétaire. Le taux d’intérêt a augmenté légèrement de 6.54% à 7.20% par an et a été étroitement contrôlé à partir de la fin de l’année 2006 jusqu’au milieu de l’année 2007.

Cependant, l’effet négatif des politiques expansionnistes mises en place lors de la période précédente a été prolongé par la présence d’un choc sur le prix mondial du pétrole à cette période. L’inflation a rapidement augmenté et a atteint un pourcentage à deux chiffres à la fin de l’année 2007 puis un pic de 28% au milieu de l’année 2008.

De ce fait, le Gouvernement a renforcé sa lutte contre l’inflation en réduisant activement la masse monétaire en circulation, en ajustant le taux

d’intérêt à la hausse, en augmentant le taux de réserves obligatoires et en émettant des obligations bancaires.5

- Troisième période (allant du milieu de l’année 2008 à la fin de l’année 2010) : la politique monétaire expansionniste combinée à une politique budgétaire laxiste pour empêcher la récession économique ; l’inflation est principalement contrôlée à l’aide d’outils administratifs

Pour faire face à ces problèmes, les politiques monétaires ont été immédiatement inversées et sont passées d’une phase de resserrement à une phase d’expansion.

En ce qui concerne la politique monétaire à partir du mois d’Octobre 2008, le taux d’intérêt directeur a diminuée 4 fois pour passer de 14% à 10%; le taux de refinancement a diminué de 15% à 11%; le taux de réescompte a diminué de 13% à 9% ; le taux de réserves obligatoires a diminué de 11% à

5 Le taux d’intérêt directeur a augmenté à 14%/an; le taux de refinancement a augmenté à 15%/an ; le taux de réescompte a augmenté à 13%/an ; le taux de dépôt a augmenté de 7.2% → 8.97% → 11.19% → 17.16%/an; le taux de crédit a augmenté de 11.18% → 14.6% → 20.19%/an en Août 2008; Le taux de réserves obligatoires a augmenté 1% de plus ; plus de 20 milliards 300 millions de Vietnamdong ont été retirés de l’économie grâce aux ventes des obligations de la banque centrale.
6%. La Banque centrale a également autorisé les paiements des obligations qui avaient été émises lors de la période précédente.

En ce qui concerne de la politique budgétaire, au début de l’année 2009, une stimulation économique de grande ampleur a été lancée. À la fin de cette période, l’économie montre des signes de reprise. Cependant, cette stimulation économique a duré plus longtemps que nécessaire et a donc à nouveau déclenché une phase d’inflation, qui a rapidement atteint 11,75% par an à la fin de l’année 2010.

La conséquence inattendue des politiques effectuées au cours de la période précédente est une escalade continue de l’inflation. L’inflation a augmenté en quelque mois de 11.75% à 12.31% par an. Pendant la même période, la croissance économique a repris une tendance à la baisse.

À partir du mois de Février 2011, le Gouvernement Vietnamien a pris la décision que l’objectif prioritaire du Gouvernement serait de contrôler efficacement l’inflation et de stabiliser l’économie. Puis, la politique monétaire a été resserrée. Le taux de croissance de l’offre de crédit a été restreint avec un plafond fixé à 20% - un niveau qui est plus faible que le niveau moyen de 30% appliqué durant la période précédente ; un plafond de 14%/an a été imposé aux taux d’intérêt.

Après 9 mois de cette stratégie, l’économie a retrouvé la stabilité des évolutions des indicateurs macro-économiques clés. Néanmoins, la croissance potentielle de l’économie a montré des signes de déclin qui reflètent la faiblesse intrinsèque de l’économie.
• La cinquième période, de la fin de l’année 2011 à aujourd’hui :

 Assouplissement progressif de la politique monétaire

La politique monétaire a commencé à s’assouplir mais ceci n’est pas très clair à la fin de l’année 2011. La preuve est que la Banque centrale a annoncé une réduction du taux de dépôt à 14%/an et a demandé aux banques commerciales d’appliquer de manière précise ce plafond du taux de dépôt. Pourtant, dans les banques commerciales, des taux de dépôt de 17% à 19%, (et même de 21% à 22% pour les grands dépôts) ont été appliqués lors de transactions réelles. Ce fait est la conséquence de la concurrence intense qui existe entre ces banques commerciale. Le taux d’intérêt de dépôt trop haut a poussé le taux d’intérêt de crédit à la hausse et a limité l’accès aux capitaux dans l’économie. La production est rentrée dans une phase de récession et de nombreuses entreprises ont fait faillites.

Pour améliorer cette situation, la Banque centrale a également mis en place des solutions administratives pour intervenir et contrôler le système des banques commerciales. Tous ces efforts ont pour but de faire atteindre à nouveaux au taux de dépôt réel un niveau de 14%, afin de soutenir l’économie. Ceci démontre l’incohérence et l’inefficacité du fonctionnement de la politique monétaire. Il apparaît ici une contradiction entre le resserrement monétaire appliqué pour contrôler l’inflation et les efforts fait pour abaisser les taux d'intérêt. Finalement, l’inflation a été contrôlée.

En 2012, l’inflation n’est plus le problème le plus inquiétant mais la récession est importante et devient un vrai handicap. Le taux de croissance est tombé à 4%, une chute historique au premier semestre de l’année 2012. Les politiques économiques ont alors été de nouveau assouplies mais avec précaution. Le taux de dépôt a diminué et l’offre de la monnaie a légèrement augmenté.
La politique est maintenue. L’inflation est assez stable et reste autour de son niveau désiré (5%). Cependant, après des difficultés, la reprise de l’économie est assez lente. La demande globale reste encore faible et la production croît lentement, voire stagne. Le taux de croissance n’atteint pas son niveau d’équilibre (le niveau correspond au taux d’inflation d’équilibre qui est examiné maintenant).

1.4. Une base de données de l’inflation encore très limitée et hétérogène

La mesure de l’IPC du Vietnam se conforme aux normes internationales, elle reflète assez bien le coût de la vie des ménages du Vietnam et ses changements périodiques.

En ce qui concerne la structure de l’IPC, il faut noter que les groupes des produits d’alimentation occupent une part très importante du panier de consommation. Les évolutions des prix de ces produits ont donc toujours des impacts importants sur l’évolution de l’IPC. Le problème est que les prix de ces produits varient fortement car leur production dépend fortement des conditions climatiques. Le taux d’inflation calculée à partir de l’IPC dépend donc pour une grande part des chocs externes, qui sont hors du contrôle des politiques.
monétaires. Ceci pose donc un problème car l’évolution du taux d’inflation calculé à partir de l’IPC n’est donc pas uniquement liée à la politique monétaire du Vietnam. L’indice d’inflation n’est ainsi qu’un outil important pour l’analyse, la prévision et le contrôle de la politique monétaire du Vietnam. Cet argument est renforcé par les faibles relations de corrélation qui existent entre l’inflation, la masse monétaire, l’offre de crédit ou le taux de crédit dans ce pays. À certaines périodes, il est même parfois difficile d’identifier la relation causale qui devrait exister entre l’inflation et ces variables macro-monétaires.

Tableau 2: LA STRUCTURE DU PANIER DE CONSOMMATION DU VIETNAM

<table>
<thead>
<tr>
<th>Groupes de biens et services</th>
<th>2001</th>
<th>2006</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Alimentations</td>
<td>47.9</td>
<td>42.9</td>
<td>39.93</td>
</tr>
<tr>
<td>2 Équipements du logement</td>
<td>9.2</td>
<td>8.6</td>
<td>8.7</td>
</tr>
<tr>
<td>3 Transports</td>
<td>10.1</td>
<td>9.0</td>
<td>8.9</td>
</tr>
<tr>
<td>4 Logements</td>
<td>8.2</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>5 Vêtements</td>
<td>7.6</td>
<td>7.2</td>
<td>7.3</td>
</tr>
<tr>
<td>6 Éductions</td>
<td>2.9</td>
<td>5.4</td>
<td>5.7</td>
</tr>
<tr>
<td>7 Santé</td>
<td>2.4</td>
<td>5.4</td>
<td>5.6</td>
</tr>
<tr>
<td>8 Boissons</td>
<td>4.5</td>
<td>4.6</td>
<td>7.0</td>
</tr>
<tr>
<td>9 Cultures</td>
<td>3.8</td>
<td>3.6</td>
<td>3.8</td>
</tr>
<tr>
<td>10 Poste</td>
<td></td>
<td></td>
<td>2.7</td>
</tr>
<tr>
<td>11 Autres</td>
<td>3.4</td>
<td>3.3</td>
<td>3.3</td>
</tr>
</tbody>
</table>

À propos de la base de données de l’inflation du Vietnam, il est important de noter les points suivants.

Premièrement, les données de l’inflation du Vietnam sont disponibles auprès de sources fiables comme l’IFS et le Bureau statistiques national du Vietnam. Cependant, il existe une hétérogénéité entre les données fournies par ces sources.

D’autre part, si l’indice d’inflation agrégé du Vietnam est disponible auprès de nombreuses sources, les sous-indices de l’IPC ne sont disponibles qu’auprès du GSO. De plus les chercheurs indépendants, n’ont le droit d’accéder qu’aux sous-indices de niveau 1 et 32 sous-indices de niveau 2 de cette base de données. Les sous-indices de niveau 3, 4 et 5 sont indisponibles.

Pour cette étude, nous utilisons uniquement des données fournies par le GSO Vietnamien pour la simple raison qu’elles correspondent aux données reportées dans les rapports gouvernementaux.

Par exemple, la structure de l’IPC du Vietnam identifiée pour la période de 2009-2014 se compose de:

11 sous-indices de niveau 1 (correspondant à 11 grandes groupes de biens et services)
32 sous-indices de niveau 2 (correspondant à 32 sous-groupes de biens et services)
86 sous-indices de niveau 3
256 sous-indices de niveau 4
Et des 572 indices de prix de 572 éléments de biens et services.

Ce problème relatif aux données disponibles et à leur qualité est un obstacle majeur pour ce travail économétrique sur le Vietnam.

2. Motivation de la recherche

Notre étude a été grandement motivée par la réalité de l’inflation au Vietnam que nous avons mentionnée dans la section précédente. La forte inflation qui s’est produit au cours des années passées a amené l’inflation au centre des discussions non seulement des décideurs politiques mais encore des chercheurs. Ainsi, l’actualité et l’importance de ce sujet de recherche ont aussi été confirmées et répétées dans une série de résolutions prisent par le Gouvernement vietnamien : la résolution numéro 11 de 2011, la numéro 01 de 2012 ; la numéro 13 de 2012 et les deux résolutions numéro 01 et 02 de 2013. Ces résolutions s’appuient toutes sur le fait que la priorité est de juguler l’inflation élevée.
Pour étudier l’inflation du Vietnam, nous ne nous orientons pas vers une analyse des situations ou des causes de l’inflation, ni vers une analyse des solutions ou des stratégies de lutte contre la hausse de l’inflation. Nous nous sommes davantage intéressées aux problèmes techniques concernant l’évaluation de l’inflation sous-jacente et l’utilité d’un indice d’inflation sous-jacente pour prévoir le taux d’inflation. Ce choix est fondé sur les raisons suivantes :

Premièrement, au cours des années passées, il est apparu un problème qui déclencha des alarmes concernant la fiabilité de l’indice d’inflation calculé à partir de l’IPC du Vietnam. Suite à ce problème il a été nécessaire de procéder à une révision du calcul de l’inflation ainsi qu’à la détermination d’indices supplémentaires pour l’inflation. Un signe clair de ce problème est qu’il est apparu qu’à certaines périodes spécifiques se produisait une opposition entre la fluctuation de l’offre de la monnaie et la tendance inflationniste mesurée à l’aide de l’IPC. La relation de causalité détectée entre ces deux variables allait dans le sens contraire de ce qui est suggéré par la théorie monétaire. Par conséquence, les politiques monétaires et leur impact sur l’inflation sont donc évalués avec une grande incertitude, ce qui restreint sérieusement les possibilités de surveillance et le contrôle de l’inflation de la Banque centrale du Vietnam. Il est donc nécessaire de trouver des mesures complémentaires de l’inflation et qui concordent mieux avec la politique monétaire que le simple taux d’inflation de l’IPC. Ces mesures doivent offrir plus d’efficacité pour les analyses et les prévisions de l’inflation. Elles doivent

Introduction générale

généralement offrir des bases plus sure pour élaborer les stratégies d'action pour la Banque centrale dans la lutte contre l’inflation. La littérature sur ce thème semble suggérer que le calcul de « l’inflation sous-jacente » est un premier pas incontournable dans la construction d’un indicateur d’inflation fiable et stable pour l’évaluation et le pilotage de la politique monétaire du Vietnam.

Deuxièmement, la prévision en général et la prévision de l’inflation en particulier constituent un vrai défi pour le Vietnam.

Le tableau 3 et la figure 3 présentent la différence entre les objectifs d’inflation de la Banque centrale du Vietnam et les résultats effectifs.

Tableau 3: INFLATION AU VIETNAM: L’ÉCART ENTRE PRÉVISION ET RÉALITÉ

<table>
<thead>
<tr>
<th>Année</th>
<th>Taux d’objectif (%)</th>
<th>Taux effectif (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>6</td>
<td>-0.6</td>
</tr>
<tr>
<td>2001</td>
<td>Moins de 5</td>
<td>0.8</td>
</tr>
<tr>
<td>2002</td>
<td>De 3 à 4</td>
<td>4</td>
</tr>
<tr>
<td>2003</td>
<td>Moins de 5</td>
<td>3</td>
</tr>
<tr>
<td>2004</td>
<td>Moins de 5</td>
<td>9.5</td>
</tr>
<tr>
<td>2005</td>
<td>Moins de 6.5</td>
<td>8.4</td>
</tr>
<tr>
<td>2006</td>
<td>Moins de 8</td>
<td>6.6</td>
</tr>
<tr>
<td>2007</td>
<td>Moins de 8</td>
<td>12.6</td>
</tr>
<tr>
<td>2008</td>
<td>Moins de 10</td>
<td>19.9</td>
</tr>
<tr>
<td>2009</td>
<td>Moins de 15</td>
<td>6.5</td>
</tr>
<tr>
<td>2010</td>
<td>De 7 à 8</td>
<td>11.8</td>
</tr>
<tr>
<td>2011</td>
<td>Moins de 7</td>
<td>18.13</td>
</tr>
<tr>
<td>2012</td>
<td>Moins de 10</td>
<td>6.81</td>
</tr>
<tr>
<td>2013</td>
<td>De 6 à 6.5</td>
<td>6.04</td>
</tr>
<tr>
<td>2014</td>
<td>7</td>
<td>4.09</td>
</tr>
</tbody>
</table>
Les données montrent que, au cours de la dernière décennie, au Vietnam, les taux d'inflation observés ont toujours été biaisés par rapport aux objectifs (les taux d'inflation cible que l’Assemblée nationale avait prévus, approuvés et publiés au début de chaque année). Ce phénomène se répète plusieurs fois, même si les taux cibles sont parfois ajustés pour mieux concorder avec la réalité. Par exemple, en 2010, le taux d’inflation cible n’est que de 7-8% mais le taux d’inflation effectif est de 11.8%. Il est clair que les prévisions d’inflation que la Banque centrale a effectuées sont éloignées des réalisations. La Banque Centrale ne dispose pas en fait d’un modèle de prévision assez fin et précis. Peut-être, qu’il existe des modèles de prévision qui sont établis par des chercheurs indépendants, mais ces modèles ne sont pas encore utilisés par la Banque Centrale.

En l’absence de prévisions de bonne qualité, la politique monétaire a été conduite de manière discrète au lieu de respecter une règle spécifique dans le cadre d’une stratégie à moyen et à long terme. La conduite de politique monétaire devient simplement passive. De plus, les économies en
transformation comme celle du Vietnam étant souvent impactées par des chocs externes et internes, le problème est encore plus sérieux.

De notre point de vue, la Banque Centrale du Vietnam doit se doter de moyens statistiques, économiques et économétriques permettant d’améliorer et de standardiser la prévision d’inflation et la détermination de la politique monétaire adaptée en situation de chocs exogènes.

Les politiques dans l’avenir devraient d’être établies en se basant sur des prévisions efficaces qui tiennent compte non seulement des effets de la politique monétaire mais aussi du mécanisme d’auto-ajustement de l’économie.

Ce sont ces raisons qui nous ont poussé à effectuer une recherche sur la prévision de l’inflation pour le Vietnam. Dans le cadre de cette recherche, l’estimation de l’inflation sous-jacente est la première tâche à accomplir. Une fois que nous aurons fini cette première étape, les indices d’inflation sous-jacente seront utilisés pour établir un système de prévision – le but final de notre travail de recherche.

À côté de ces raisons clés, il y a encore d’autres raisons qui encouragent le choix de notre sujet de recherche.

Deuxièmement, étudier les techniques d’estimation et de prévision d’inflation est un nouvel axe de recherche au Vietnam. La plupart des recherches porte sur l’analyse des situations qui provoquent la hausse de l’inflation ou sur l’analyse des solutions optimales pour renforcer le contrôle de l’inflation. En ce qui concerne l’inflation sous-jacente, il existe seulement quelques articles qui parlent de la nature de l’inflation sous-jacente ; quelques interviews qui portent sur le projet d’estimation de l’inflation sous-jacente de la Banque centrale. À notre connaissance, avant le commencement de notre travail de recherche, il n’y avait aucun article ou étude portant officiellement sur ce sujet. En 2013, un chercheur individuel a publié un rapport de travail sur les mesures de l’inflation sous-jacente pour le Vietnam\(^8\). Il n’existe pas ou peu d’articles, de documents,… sur la construction d’un système pour prévoir l'inflation pour le Vietnam.

Troisièmement, la Banque centrale est en train d’envisager la mise en œuvre du ciblage de l’inflation dans la conduite de la politique monétaire. Parmi les quatre conditions techniques obligatoires pour l’application de celui-ci, il y a déjà deux conditions qui concernent directement notre sujet de recherche. Ce sont : i) le fait d’avoir des mesures optimales de l’inflation sous-jacentes ; ii) le fait d’avoir un modèle efficace pour prévoir l’inflation. Les résultats de ces prévisions seront utilisés pour déterminer la cible et la valeur de l’inflation à court, moyen et long terme. Ce seront les bases qui serviront à établir les stratégies d’action de la Banque centrale du Vietnam dans l’avenir, lorsque le ciblage de l’inflation sera approuvé et exécuté.

\(^8\) L’étude de LAI Ngoc Anh (LAI, N.A, 2013).
Quatrièmement, dans le monde, l’estimation de l’inflation sous-jacente et la prévision de l’inflation intéressent encore et toujours les chercheurs, malgré que les études de l’inflation sous-jacente ne soient pas récentes. Les premières études ont été effectuées au début de l’année 1990, même si il y a eu des études antérieures qui ont abordé ce sujet. De plus, l’inflation sous-jacente est aujourd’hui une chose familière pour les différentes banques centrales du monde.

3. Objectif de la recherche

L’objectif final que nous voulons atteindre via notre travail de recherche est d’établir avec succès un système de prévision de l’inflation pour le Vietnam, dont l’objectif intermédiaire important est d’estimer l’inflation sous-jacente. Dans le cadre de cette thèse, cet objectif intermédiaire est identifié comme l’objectif principal à atteindre.

Ces objectifs sont identifiés d’abord sur notre motivation de recherche, puis sur les limites de temps, sur la disponibilité des données ainsi que sur le processus d’exécution. Dans le cadre de ce travail de thèse, nous nous limitons au travail d’estimation de l’inflation sous-jacente. Pour cela, nous analysons successivement les points suivants.

Premièrement, nous passerons en revue les différentes approches de l’inflation et de l’inflation sous-jacente pour mettre en évidence la nécessité et l’utilité du concept d’inflation sous-jacente pour le Vietnam.
Deuxièmement, nous présenterons les différents modèles qui permettent d’estimer l’inflation sous-jacente.

Enfin, les indices d'inflation sous-jacente, une fois estimés, en plus de satisfaire aux critères d'évaluation généraux, devraient avoir une grande capacité prédictive. De notre point de vue et afin d’atteindre notre objectif final, la capacité prédictive est le critère primordiale pour l’évaluation de l’inflation sous-jacente car avoir des indices possédant une bonne capacité prédictive est la condition indispensable pour avoir une bonne prévision de l’inflation. Le dernier sous-objectif est d’examiner et d’identifier les indices d’inflation sous-jacente donnant les meilleures prévisions de l’inflation au Vietnam.

4. Méthodologie de la recherche

Les points clés de la méthodologie de ce travail de recherche sont les mesures et les modèles d’estimation de l’inflation et les raisons du choix de ces mesures.
Les mesures statistiques sont choisies et appliquées en premier grâce à leur popularité. Ces mesures sont largement connues car elles sont utilisées dans plusieurs banques centrales à travers le monde. Ces mesures possèdent des avantages comme d’être simple à comprendre et à appliquer. Les calculs de ces mesures sont familiers car proche des calculs de l’IPC – la mesure qui est largement acceptée par les organisations statistiques mondiales. Les mesures les plus caractéristiques sont l’exclusion des éléments spécifiques ; la moyenne tronquée ou la pondération réduite. À côté de telles mesures statiques, nous appliquons aussi une autre mesure statistique qui est dynamique. C’est le modèle de facteur dynamique – un modèle qui est très utile pour capturer la dynamique des évolutions de l’inflation.

La limite essentielle de ces mesures est d’être uniquement basé sur une analyse statistique. Elles sont appuyées sur aucun cadre macro-économique alors que la littérature macro-économique montre que l’inflation est une variable économique qui a de nombreuses et étroites relations avec d’autres variables macro-économiques.

L’analyse de l’inflation restera déficiente si elle n’est pas vue dans un contexte macro-économique dans lequel on tient compte de ses relations associées aux mouvements des autres variables macroéconomiques. C’est pour cette raison, que les modèles économétriques ont été examinées et sélectionnées pour mesurer l’inflation sous-jacente. La combinaison des outils mathématiques avec la théorie économique dans ces modèles économétriques permet d’observer l’inflation dans ses relations à court terme et à long terme avec les autres variables. De plus, ces modèles aident également à extraire l’inflation sous-jacente – une composante inobservable directe de l’inflation – en fonction des contraintes définies par les relations de cette variable. Les modèles utilisés dans cette thèse sont respectivement le modèle SVAR de Quah et Vahey, le modèle à tendances communes et le modèle à composantes non
observées. La théorie macro-économique clé sous-jacente dans ces trois modèles est d’une part une relation positive à court terme entre le prix et la production et d’autre part l’indépendance à long terme de la production par rapport aux prix. Les modèles suivants sont sélectionnés pour remédier à l’inconvénient des modèles précédents et ont tous pour but final d’avoir un indice d’inflation sous-jacente « pur ». La pureté est entendue dans le sens que la mesure de l’inflation sous-jacente est étroitement reliée à l’équilibre avec l’inflation observée et l’inflation transitoire est positivement corrélée avec l’écart de production.

Les indices d’inflation sous-jacente obtenus seront examinés et comparés à l’aide d’une batterie d’indicateurs de qualité. Les conclusions quant à l’utilité de ces indices seront fondées sur leur score de performance au regard de ces critères. Finalement, ils seront classés en fonction de leur capacité à prévoir l’inflation future.

En outre, comme les autres recherches, nous exploitons au maximum les méthodes comme : la méthode inductive, la méthode d’interprétation, la comparaison et l’association de la littérature à la pratique…pour avoir un aperçu complet de l’inflation et de l’inflation sous-jacente pendant la période d’observation.

5. **Structure de la thèse**

banques centrales à travers monde – sont reportées dans le chapitre 2. Le chapitre 3 présente les modèles économétriques qui aident à estimer l’inflation sous-jacente. Chaque mesure est également étudiée et reportée dans le processus suivant : d’abord, la notion d’inflation sous-jacente ; puis, la littérature de base de cette notion d’inflation sous-jacente ; ensuite, les techniques d’estimation de l’inflation sous-jacente et enfin, l’application de cette mesure dans le cas du Vietnam. Les indices d’inflation sous-jacente obtenus aux chapitres 2 et 3 seront examinés, analysés et comparés les uns aux autres. Ces tests seront reportés dans le chapitre 4. La conclusion générale résume les résultats finaux de ce travail de recherche.
Chapitre 1

Inflation sous-jacente:
Présentation et Utilité du concept

1. Introduction

Le concept d’inflation sous-jacente est apparu à la suite du constat que l’inflation, calculée comme le taux de croissance de l’indice de prix à la consommation (IPC⁹), n’est pas une mesure idéale de l’inflation. Plus précisément, les théories macroéconomiques présentent le taux d’inflation comme le taux de croissance tendanciel moyen du niveau général des prix lorsque l’économie est dans une situation d’équilibre général dans laquelle le taux d’inflation est essentiellement induit par le taux de croissance de la masse monétaire et le taux de croissance du PIB réel. Le taux d’inflation mensuel ou annuel étant influencé par les chocs de court-terme (en provenance de la demande agrégée, des marchés des matières premières, des anticipations, etc…) n’est donc pas exclusivement induit par la politique monétaire et le taux de croissance économique. L’adéquation entre le concept théorique d’inflation

⁹ Désormais dans cette thèse, cet indice de l’inflation est nommé de « l’inflation observée »
et la mesure usuelle de l’inflation n’est donc pas parfaite. De nombre travaux différents ont donc porté sur la recherche d’une mesure de l’inflation sous-jacente qui fait bien apparaître la nature réelle de l’inflation. L’inflation sous-jacente étant une variable non-observable, il n’existe pas une notion unique ou qu’une méthode sure pour l’identifier. Il existe en fait plusieurs mesures pour identifier l’inflation sous-jacente. Notons que, lorsque l’on mentionne l’inflation sous-jacente, on a tendance à se référer aux méthodes plutôt qu’à des définitions précises. Peu de chercheurs tentent en effet de définir précisément ce terme. Jusqu’à présent, même si elle a été calculée et largement utilisée dans de nombreuses Banques centrales à travers le monde, la question de savoir quel est le concept d’inflation sous-jacente le plus précis est toujours au centre des débats macroéconomiques.

L’histoire du développement du terme d’inflation sous-jacente a officiellement commencé par l’étude de Otto Eckstein (1981) - qui est considéré comme le père de ce terme, puis de Blinder (1982), Bryan et Cecchetti (1994), Quah et Vahey (1995) et Laflèche (1997)\(^\text{10}\). Chaque auteur a sa propre définition et ce sont les différences existantes entre chaque définition qui ont conduit à la création de mesures différentes pour chaque auteur. Le point commun qui existe entre tous ces concepts est qu’ils ont pour base une théorie de l’inflation. Les théories de l’inflation sont celles de Friedman\(^\text{11}\), Arthur Okun\(^\text{12}\), John Flemming\(^\text{13}\), Laidler et Parkin\(^\text{14}\). Elles ne sont pas

\(^{10}\) Nous présentons sélectivement les concepts de l’inflation sous-jacente qui ont pratiquement un grand usage.

\(^{11}\) (Friedman, M, 1963)

\(^{12}\) (Okun, A, 1970)

\(^{13}\) (Flemming, J. S, 1976)

\(^{14}\) (Laidler, D., & Parkin, M, 1975)

Suivant le courant de pensée de la première école, Eckstein, puis Quah et Vahey considèrent l’inflation sous-jacente comme la composante persistante du taux de croissance de l’IPC qui résulte des effets permanents accumulés des chocs économiques au fil du temps.

Étant guidée par la deuxième école de pensée, Bryan, Cecchetti et Laflèche mettent plutôt l’accent sur la tendance générale qui se retrouve dans les mouvements des prix des biens individuels dans l’économie. La composante de l’inflation causée par les chocs sectoriels est alors identifiée comme le biais de l’inflation par rapport à sa tendance commune et doit être éliminée de l’inflation pour le calcul de l’inflation sous-jacente.

Depuis lors, différents concepts et différentes mesures de l’inflation sous-jacente ont été développés par ces deux écoles. Ces mesures qu’il est préférable de considérer comme complémentaires contribuent à apporter des informations utiles à l’évolution de la nature et du niveau de l’inflation sous-jacente.

Ce chapitre est consacré à une présentation détaillée de la nature de l’inflation sous-jacente. Les deux sections suivantes (section 2 et 3) présentent respectivement chacune des deux écoles de pensées concernant l’inflation sous-jacente. Les points principaux portés sur l’utilité de l’inflation sous-jacente sont brièvement abordés dans la quatrième section. Puis viendra la conclusion.
2. Une première approche : l’inflation sous-jacente en tant qu’inflation persistante

Pour faciliter l’explication des concepts d’Eckstein et de Quah et Vahey sur l’inflation sous-jacente, nous commençons par une décomposition de l’inflation en trois éléments:

\[
\pi_t = \pi_t^e + \pi_t^d + \pi_t^o
\]

(1.1)

Premièrement, \(\pi_t^e\) représente l’inflation anticipée, qui est à l’origine des anticipations d’inflation induites par les mouvements de l’inflation dans le passé et qui est étroitement associée à la spirale inflationniste prix-salaire. Les travailleurs, dont le but est de maintenir leurs niveaux de salaires réels, demandent des hausses de salaires nominaux correspondant à l’augmentation de l’inflation. Ces augmentations sont ensuite répercutées dans des hausses des prix à la production. Finalement, les firmes, pour compenser ces hausses du coût de production, font augmenter les prix de ventes de leurs produits. L’inflation continue ainsi à être nourrie. De nouveau, les travailleurs demandent donc des hausses de leurs salaires nominaux….Cette spirale devient une source importante de l’inflation au fil du temps.

Deuxièmement, l’inflation par la demande, \(\pi_t^d\), est l’inflation provoquée par la pression de la demande globale excédentaire dans l’économie. Lorsque la
Chapitre 1: Inflation sous-jacente : Présentation et Utilité du concept

Demande globale dépasse l'offre globale, l'inflation apparaît. N'importe quel facteur qui fait augmenter la demande globale peut ainsi provoquer de l'inflation. Parmi ces facteurs, l'augmentation de la masse monétaire joue un rôle central.

Troisièmement, l'inflation par les coûts π^o_t – qui est la conséquence d'une contraction de l'offre globale. Ces chocs d'offre négatifs sont les plus souvenus induits par les marchés des ressources naturelles et des inputs.

Parmi ces trois composantes de l'inflation, selon Eckstein, l'inflation anticipée π^e_t est particulièrement importante. Selon Eckstein\(^1\), dans la plupart des cas, l'inflation par la demande π^d_t et par les coûts π^o_t sont de nature temporaire. Les effets de ces chocs peuvent donc être régulés par une politique monétaire adaptée\(^2\), et ne durent donc pas longtemps. L'inflation sous-jacente est donc la composante libre de ces chocs, $\pi^c_t = \pi^e_t$. Elle est compatible avec _la tendance à la hausse_ du coût des facteurs de production qui provient des _attentes à long terme de l'inflation_ dans l'esprit des ménages et des entreprises.

Quah et Vahey ont une conception plus large que celle d'Eckstein dans le sens où pour eux l'inflation sous-jacente doit également inclure la composante de l'inflation par la demande $\pi^d_t : \pi^c_t = \pi^e_t + \pi^d_t$. L’inflation sous-jacente proposée par Quah et Vahey tient donc compte des variations _de moyen_

\(^1\) Core inflation (Eckstein, O, 1981)

\(^2\) Une politique monétaire adaptée, dans ce cas, signifie que : l’augmentation ou la baisse de la masse monétaire doit être conforme à l’augmentation ou à la baisse de la production causée par les chocs exogènes. Il en résulte une compensation entre les effets des chocs et les impacts de la politique monétaire et les prix reviennent à un niveau stable.
terme et de long terme des prix, alors que l’inflation sous-jacente proposée par Eckstein ne considère que les changements des prix à long terme. Ces deux concepts fournissent en fait des informations complémentaires qui sont utiles pour les responsables politiques monétaires. Pour une stratégie de long terme, les informations de l’inflation sous-jacente d’Eckstein sont plus pertinentes que celle de Quah et Vahey. Au contraire, celle de Quah et Vahey fournit des informations pertinentes pour un plan d’action de politique monétaire de moyen terme (environ de 3 à 5 ans).

Pour illustrer rapidement les arguments de Quah et Vahey, nous utilisons le modèle AD – AS (Demande globale et Offre global). Les points clés de cette théorie permettent de percevoir la logique implicite de la définition de l’inflation sous-jacente.

Premièrement, le modèle AD-AS montre que les prix et la production sont indépendants l’un de l’autre à long terme. Ceci correspond au postulat de base de la définition de Quah et Vahey selon lequel: “L’inflation sous-jacente est la composante de l’inflation qui n’a aucun impact sur la production à moyen terme à long terme ». Cette relation prix-production est expliquée par les figures ci-dessous.

Figure 4: ÉQUILIBRE MACROÉCONOMIQUE À LONG TERME
L’axe vertical représente le prix et l’axe horizontal représente la production agrégée de l’économie. La courbe de demande globale représente la demande agrégée en fonction du niveau des prix. La courbe d’offre globale correspond à l’offre de biens que l’économie peut fournir à chaque niveau de prix. L’intersection de ces deux courbes indique le niveau des prix P_1 d’équilibre de long terme.

La courbe d’offre globale possède une pente positive à court terme (SRAS), alors que l’offre de long terme est parfaitement verticale (LRAS). Cette verticalité est induite par l’ajustement complet du marché de travail par le salaire réel. La verticalité de cette courbe illustre l’indépendance de la production à l’évolution des prix à long terme, autrement dit, «les changements des prix n’ont aucun impact sur la production à long terme dans l’économie». Cette hypothèse sera utilisée comme une contrainte économétrique dans le modèle VAR Structurel de Quah et Vahey pour identifier l’inflation sous-jacente.

Figure 5: COURBE D’OFFRE GLOBALE À LONG TERME
Deuxièmement, les chocs d’offre temporaires n’ont que des effets transitoires sur les prix qui disparaissent au fil du temps. Ce point est également central dans la modélisation de l’inflation sous-jacente de Quah et Vahey. Du fait de leur nature temporaire, les impacts de ces chocs d’offre sont considérés selon Quah et Vahey comme des bruits dans l’évolution de l’inflation et doivent être éliminés de la structure de l’inflation sous-jacente. La composante π_t^o doit donc être éliminée. Ce point est illustré sur la figure suivante :

Figure 6: EFFETS D’UN CHOC D’OFFRE NÉGATIF DE COURT TERME

Lors que les chocs d’offre négatif apparaissent, le coût de production augmente et l’offre optimale diminue, la courbe d’offre à court terme se déplace vers la gauche, de SRAS1 à SRAS2. La conséquence est une diminution temporaire de la production, et une augmentation des prix, de P_1 à P_2. Cette situation est supposée être de court-terme. L’augmentation du
Chapitre 1: Inflation sous-jacente: Présentation et Utilité du concept

taux de chômage engendre ensuite des pressions sur le marché de travail qui font diminuer le salaire réel, ce qui assure le retour de la production à son niveau d’équilibre de long terme. Au fil du temps, la courbe d’offre de court terme revient donc vers sa position initiale. *Le prix revient également à son niveau initial* P_1. Il est clair dans ce cas, que la tendance à long terme de l’inflation est insensible à ce type de choc. La composante, π_t^p n’est donc pas nécessaire pour mesurer l’inflation sous-jacente, ce qui confirme l’argument de Quah et Vahey concernant leur concept de l’inflation sous-jacente.

Figure 7: EFFETS D’UN CHOC DE DEMANDE POSITIF

Troisièmement, les chocs de demande engendrent des effets permanents sur les prix. Quah et Vahey se concentrent sur ce point et considèrent l’inflation induite par les chocs de demande (π_t^d) comme une composante importante de l’inflation sous-jacente.
Les chocs de demande (positifs ou négatifs), entraînent des variations des prix durables (figure 7 et 8). À court terme, la courbe de demande se déplace de AD1 à AD2, et entraîne un changement des prix, de P_1 à P_2, ce qui établit un nouvel équilibre temporaire en E2. Notons que E2 n’est pas le point d’équilibre final. Avec une durée de temps suffisamment longue, l’économie a tendance à revenir à son niveau d’équilibre de long-terme avec une production potentielle Y^*. La courbe d’offre SRAS1 se déplace vers SRAS2, et établit un nouvel équilibre en E3. En ce point, les prix atteignent leur point d’équilibre final P_3, plus élevé que P_2. Selon cette analyse, il est clair que les chocs de demande ont des impacts sur l’inflation et que ces impacts sont très différents dans le temps. À court terme, ses effets sont de nature temporaire et sont illustrés par la variation des prix, de P_1 à P_2. À long terme, en E3, ses effets sur les prix deviennent permanents. L’augmentation de P_1 à P_3 est reconnue comme la composante à long terme de l’inflation et prise en compte dans la structure de la mesure de l’inflation sous-jacente de Quah-Vahey comme une composante importante, à côté de la composante d’inflation anticipée.
Le point commun de cette école de pensée, est que, les variations temporaires de prix causées par les chocs d’offre temporaires doivent être éliminées de l’inflation sous-jacente. En principe, le taux d’inflation sous-jacente est donc plus stable et moins volatile que celui de l’inflation observée. Ceci est conforme à l’opinion de Friedman sur l’inflation : «...l’augmentation régulière et soutenue du niveau général des prix »\(^{17}\). Elle correspond également à l’opinion de Laidler et Parkin\(^{18}\) : «... Un processus continue de hausse des prix, ou, de façon équivalente, de baisse continue de la valeur de la monnaie ». Le concept d’inflation sous-jacente de Quah et Vahey est représentatif de cette école de pensée. Le détail de leur modèle sera présenté dans le chapitre 3.

3. **Une seconde approche: l’inflation sous-jacente en tant qu’inflation généralisée**

Cette école se concentre sur la détermination de l’évolution commune des prix des groupes de biens dans l’économie et distingue cette évolution des chocs de prix individuels ou sectoriels. L’inflation sous-jacente est alors définie comme le mouvement de cette évolution commune des prix.

Arthur Okun dans son livre « *Inflation, problème et perspective* \(^{19}\) » a défini l’inflation comme «...la condition sous laquelle le prix générale s’accroît ». Dans son livre « *Inflation* »\(^{20}\), John Flemming a lui aussi donné une définition de l’inflation qui est «...le taux où le niveau général des prix

\(^{17}\) (Friedman, M, 1963), “…steady and sustained increase in the general price level”

\(^{18}\) (Laidler, D., & Parkin, M , 1975), “…a process of continuously rising prices, or, equivalently, of a continuously falling value of money”

\(^{19}\) (Okun, A, 1970). Inflation.The problems and prospects before us

\(^{20}\) (Flemming, J. S, 1976). Inflation

Bryan, Cecchetti et l’inflation sous-jacente

Dans cette ligne de pensée, Bryan et Cecchetti ont montré que l’inflation mesurée par le changement de l’indice de prix de consommation (IPC) ne reflète pas exactement la nature de l’inflation. Cette indice d’inflation contient en effet des perturbations temporaires de prix individuels généralement dues à des chocs d’offre temporaires et n’ayant aucun lien avec la politique monétaire. De ce fait, selon ces auteurs, la mesure de l’inflation observée peut ne pas être une représentation correcte de l’inflation et il est nécessaire de trouver un indice plus précis – l’inflation sous-jacente.

Dans leur étude «Mesurer l’inflation sous-jacente » publié en 199321, Bryan et Cecchetti ont défini l’inflation sous-jacente comme « …la composante à long terme, persistante de l’indice de prix mesurée, qui est liée d’une certaine manière à la croissance de la masse monétaire » et « …est la composante des variations des prix qui peut être perçue comme persistante sur une période de moyen terme de plusieurs années ». Ce concept peut être précisé comme suit:

21 (Bryan, M. F., & Cecchetti, S. G, 1993)
Supposons que les firmes dans l’économie se divisent en deux groupes : le premier groupe peut évaluer et ajuster le prix de ses biens et de ses services de façon flexible. L’autre groupe est par contre plus rigide. La flexibilité signifie ici que la firme peut fixer ou ajuster rapidement et facilement ses prix en fonction des signaux du marché et de l’économie. Au contraire, la rigidité signifie que la firme fait rarement des ajustements de ses prix car le coût de chaque ajustement est significatif. Ce coût est défini comme « un coût de menu ». Le groupe rigide s’intéresse plus aux tendances persistantes de l’inflation qu’à ses variations à court terme. Il n’ajuste donc ses prix que si les variations actuelles de prix sont perçues comme faisant partie de la tendance à long terme de l’inflation. Tandis que, pour le premier groupe, il n’y a aucun raison de prendre en compte la tendance à long terme de l’évolution des prix ou la croissance de la masse monétaire. Ce secteur peut changer fréquemment ses prix en fonction des chocs d’offre et de demande sur les marchés. Les ajustements rapides et continus des prix de ce groupe sont considérés comme l’origine des perturbations de l’inflation, qui amplifient les effets des chocs temporaires sur celle-ci, et accroît le biais de l’inflation par rapport à sa tendance persistante – l’inflation sous-jacente.

Si on ne prend en compte que la variation de prix du deuxième groupe – le groupe des firmes rigides – on a l’information sur l’inflation sous-jacente. Notons que cette division en deux groupes colle assez bien à la Nouvelle théorie Keynésienne selon laquelle, les firmes n’ajustent généralement leurs prix qu’en fonction de deux éléments : les chocs inattendus qui se sont déroulés dans le passé et les prévisions de changements de la tendance pour l’avenir.

L’inflation sous-jacente est dans ce cadre, facile à définir mais difficile en pratique à déterminer. D’un autre côté, selon Bryan et Cecchetti, une vraie définition de l’inflation sous-jacente doit tenir compte du régime dans lequel les prix et la masse monétaire sont déterminés dans l’économie. En outre, l’objectif de ces deux auteurs est d’exploiter les données actuellement
disponibles de l’indice de prix de consommation pour extraire l’inflation sous-jacente. De ce fait, Bryan et Cecchetti ont adopté leur théorie à un modèle statistique permettant d’identifier et d’estimer l’inflation sous-jacente en pratique. Dans ce modèle, l’économie se compose de plusieurs firmes, la croissance tendancielle de la production est normalisée à zéro et la vitesse de circulation de la masse monétaire est constante. La croissance de la masse monétaire \(m \) est une variable exogène, définie soit comme une constante ou soit comme une marche aléatoire.22 Dans de telles conditions, chaque firme change initialement ses prix conformément au taux de croissance de la masse monétaire \(m \). L’inflation est alors égale à l’inflation monétaire. Bryan et Cecchetti définissent alors l’inflation sous-jacente comme \(\pi^c = m \). D’un autre côté, chaque firme subit également un choc individuel, noté \(e_i \) qui peut résulter des changements du coût de production ou des changements de la demande de ses biens et services. La distribution de ces chocs, notée \(f(e_i) \), a une forme arbitraire. La formation du prix de chaque firme devient alors : \(\pi_i = m + e_i \). L’ajustement du prix du bien \(i \) dépend donc de la taille du choc \(e_i \). On retreint donc pour \(e_i \) un intervalle de valeurs comprises entre \(\underline{e} \) et \(\overline{e} \). Remarquons que cet intervalle de valeurs est le même pour toutes les firmes car ces firmes sont supposées avoir des coûts de menu identiques. Seules les firmes telles que \(\underline{e} < e_i < \overline{e} \) réaliseront des ajustements de prix en fonction de \(e_i \). Par conséquence, les firmes rigides ajustent leurs prix en fonction de \(m \) uniquement et les firmes flexibles ajustent leurs prix en fonction de \(m \) et de \(e_i \).

Selon Bryan et Cecchetti, les variations de prix des firmes rigides convergent vers le pic de l’histogramme tandis que les variations de prix des

22 Dans le cas où la masse monétaire suit une marche aléatoire, l’inflation sous-jacente devient un prédicteur plus efficient de l’inflation future.
firmes flexibles se dispersent dans les queues de l’histogramme. Ceci est présenté dans l’histogramme suivant (figure 9):

Figure 9: DISTRIBUTION DES VARIATIONS DES PRIX

Avec ce cadre théorique, il est maintenant possible de mesurer l’inflation et l’inflation sous-jacente. Pour l’inflation, Bryan et Cecchetti calculent la moyenne des variations de prix de toutes les firmes, rigides et flexibles\(^{23}\). L’inflation sous-jacente est donnée par la moyenne des variations de prix des firmes rigides (celles qui sont étroitement liées à la croissance de la masse monétaire \(m\), avec \(\pi^c = m\)). Dans le cas où les chocs \(e_t\) suivent une distribution symétrique\(^{24}\), il vient \(\pi = \pi^c = m\) de sorte que l’inflation est juste égale à l’inflation sous-jacente et à la croissance de la masse monétaire. Par contre si la distribution des chocs \(e_t\) est asymétrique, l’inflation s’écarte

\[^{23}\text{En terme statistique, Ils utilisent pour cela la moyenne pondérée des variations de prix de tous les biens et services de l’indice de prix de consommation.}\]

\[^{24}\text{\(E(x_{i,t}) = 0, Var(x_{i,t}) = \sigma_i^2\)}\]

41
Chapitre 1: Inflation sous-jacente: Présentation et Utilité du concept

de l’inflation sous-jacente \((\pi \neq \pi^c)\). Si la distribution \(f(e_i)\) est plus épaissie vers la droite, alors, \(\pi > \pi^c\) et vice à versa\(^{25}\) (voir figure 10).

Figure 10: HISTOGRAMME DE LA DISTRIBUTION DES VARIATIONS DE PRIX RELATIFS \(f(e_i)\)

\(^{25}\) Si \(f(e_i)\) est inclinée vers la droite, l’asymétrie positive entraîne \(\pi > \pi^c\); Si \(f(e_i)\) est inclinée vers la gauche, l’asymétrie négative entraîne \(\pi < \pi^c\).
Chapitre 1: Inflation sous-jacente: Présentation et Utilité du concept

Ce modèle est adapté au cas où les chocs sont indépendants les uns des autres, ils apparaissent et disparaissent dans chaque période. En pratique, il existe probablement des chocs qui se chevauchent ou dont la durée s’étend au-delà de la période considérée. Ce point est reconnu comme un désavantage de ce modèle. Pour cette raison, Bryan et Cecchetti ont examiné un modèle dynamique multi-périodes. D’un point de vue théorique, aussi longtemps que les chocs resteront relativement indépendants les uns des autres, la distribution des variations de prix restera groupée autour de m ; seul son biais inhérent à la moyenne dépend de la variation de son asymétrie. Plus l’asymétrie de la distribution augmente plus le biais est grand. Ce nouveau modèle dynamique et est réécrit sous la forme suivante:

$$\pi_{it} = \pi_t^c + e_{it}, \quad \text{avec} \ t = 1 \ldots K. \quad (1.2)$$

Laflèche et l’inflation sous-jacente

Laflèche propose de retenir le terme « d’inflation tendancielle » plutôt que le terme « d’inflation sous-jacente ». D’après cet auteur, il est difficile de définir exactement l’inflation tendancielle. Dans son papier « mesures du taux d’inflation tendanciel »26, le concept d’inflation tendancielle est présenté comme suit:

« L’inflation tendancielle devrait refléter la tendance fondamentale des prix. Pour se faire, le taux mesuré devrait tenir compte des variations de prix entraînées par les pressions de la demande globale, les chocs d’offre permanents et l’évolution des anticipations mais faire abstraction des perturbations résultant des chocs d’offre temporaires ».

26 (Laflèche, T, 1997), Mesures du taux d’inflation tendanciel.
Selon Laflèche, l’inflation tendancielle est donc la composante de l’inflation qui est expurgée des chocs d’offre temporaires. Les biais de l’inflation par rapport à sa tendance résultent donc de la dispersion des prix relatifs. Cependant, cette dispersion a généralement une distribution normale de sorte que les biais ne sont pas très importants. Pourtant, à certaines périodes et dans certains secteurs de l’économie, des chocs importants peuvent apparaître et amener les firmes de ces secteurs à procéder à des ajustements de prix. Il en résulte des asymétries dans la distribution des variations de prix. Pour évaluer l’inflation sous-jacente, il est donc obligatoire d’éliminer les effets de tels chocs sur les prix.27

Comme Bryan et Cecchetti, Laflèche met l’accent sur l’explication des écarts entre l’inflation observée et la tendance commune des variations de prix dans l’économie. Laflèche souligne l’existence de deux types de chocs d’offre qui ont les mêmes effets transitoires sur l’inflation. Le premier n’a que des effets passagers sur le niveau général des prix et sur l’inflation. Par exemple, l’augmentation du prix des légumes due aux aléas climatiques est juste un phénomène passager. Le deuxième laisse des effets permanents sur le prix mais n’est que transitoires sur l’inflation. Par exemple, la mise en œuvre d’un nouveau taux d’imposition indirect induit immédiatement un accroissement du prix du bien imposé. Ce prix, s’il diminue légèrement, ensuite ne revient pas à son niveau initial, mais se maintient à un nouveau niveau plus élevé qu’auparavant. Il est clair qu’il résulte de ce type de chocs un effet permanent sur le niveau des prix mais uniquement des changements à court

27 Il est à noter que : une distribution symétrique ne signifie pas forcément qu’il n’existe pas de chocs d’offre temporaires dans l’économie. On peut concevoir qu’il se produit souvent des chocs d’offre temporaires mais leurs effets sur l’inflation sont généralement distribués de façon symétrique. L’asymétrie qui apparaît à certaines périodes résulte de chocs d’offre importants et temporaire. Ceci est un point important dans les mesures de l’inflation proposées par Laflèche.
Chapitre 1: Inflation sous-jacente: Présentation et Utilité du concept

terme pour le taux d’inflation. Lorsque le prix atteint son nouveau niveau, il reste ensuite inchangé.

À partir de ces deux types de chocs d’offre, Laflèche propose deux scénarios pour mesurer l’inflation sous-jacente : le premier élimine les effets de ces deux chocs alors que le deuxième n’élimine que les effets du premier type de chocs. La prise en compte de ces deux catégories de chocs est présentée comme une évolution du modèle de Laflèche par rapport à celui de Bryan et Cecchetti dans la définition de l’inflation sous-jacente. Il est néanmoins regrettable que dans ses constructions de mesure de l’inflation sous-jacente, cet avantage ne soit pas ensuite clairement introduit.

Les idées de Bryan, Cecchetti et Laflèche peuvent être simplement mises en application par l’utilisation de mesures statistiques différentes. En pratique, les effets de ces chocs d’offre temporaires sur l’inflation sont effectivement considérés comme des valeurs extrêmes dans la distribution de prix. Remarquons aussi que l’inflation observée est en réalité le taux de changement de l’indice de prix de consommation qui est une moyenne pondérée de plusieurs sous-indices de cet indice. De ce fait, pour calculer la série de l’inflation sous-jacente, le principe est de faire abstraction de telles valeurs extrêmes ou de réduire leur importance dans le calcul de l’indice de prix de consommation. Plusieurs mesures spécifiques ont été développées en se basant sur ce principe. Le point clé de ces mesures revient à déterminer les valeurs extrêmes qui doivent être éliminées. Ces mesures de l’inflation sous-jacente sont aujourd’hui adoptées par plusieurs banques centrales dans le monde.

4. **Nécessité du concept d’inflation sous-jacente**

La raison principale qui rend nécessaire la création d’une mesure de l’inflation sous-jacente est que l’inflation observée n’est pas une mesure de
l’inflation idéale pour guider la politique monétaire. Nos analyses de la nature de l’inflation sous-jacente, dans la section précédente, reflètent en partie son importance et sa nécessité. Avant d’entrer dans les détails, nous voulons souligner que l’inflation sous-jacente ne peut pas se substituer complètement à l’inflation observée, ou, autrement dit, le concept d’inflation sous-jacente ne rend pas caduque la mesure usuelle de l’inflation observée. Il est aussi important de noter qu’aucune mesure de l’inflation ne peut être considérée comme idéale. Aucune mesure unique ne peut expliquer de manière parfaite la réalité de l’inflation en accord avec un cadre théorique sous-jacente. Toutes les mesures ne sont que des approximations de l’inflation. Afin d’obtenir une image claire et précise d’une variable non-observable telle que l’inflation, il peut donc apparaître optimal d’utiliser une grande variété de modèles et d’indicateurs.

L’utilité du concept d’inflation sous-jacente est démontrée dans les deux points suivants : 1- Elle est un outil pour analyser et guider les décisions de politique monétaire. 2- Elle est un outil pour communiquer et expliquer la politique monétaire au public.

1- L’inflation sous-jacente est un outil pour analyser et guider les décisions de politique monétaire.

Deux objectifs fondamentaux de la politique monétaire sont: la stabilisation de la production à court terme et le maintien de la stabilité des prix à long terme. Pour y parvenir, il est nécessaire que les autorités monétaires comprennent comment évoluer réellement l’inflation et les autres variables ciblées, comment les chocs sont transmis ces variables, et comment la politique monétaire impacte sur l’inflation. Cela peut être analysée à travers des variables clés telles que : l’inflation, la croissance, le taux de chômage, etc. Ce qui rend complexe ce processus est que ces variables ne reflètent que les conditions passées, pas les conditions actuelles ou future, tandis que les
décisions de politiques économiques sont généralement faites pour le futur. Notamment, la politique monétaire ne prend effet qu’après un décalage. Par conséquence, la conduite d’une politique monétaire dans ce cas, est pareille à la conduite d’une voiture en ne regardant que dans les rétroviseurs. Dans cet optique, il est exigé, par les autorités de la politique monétaire, non seulement d’avoir des informations sur le passé de l’inflation, mais encore d’avoir des informations sur son évolution à venir. La définition d’une politique monétaire passe donc, dans une première étape, par une prévision des valeurs futures de l’inflation. Pour de telles prévisions, l’inflation sous-jacente joue un rôle décisif et surpasse l’inflation observée. Comme illustré dans la section précédente, l’inflation sous-jacente ne comprend que la composante tendancielle des variations des prix. Elle peut donc donner une vision du passé et de l’avenir de l’inflation. À l’opposé, l’inflation observée peut donner des informations partiellement erronées sur les pressions inflationnistes dans l’économie car elle contient des bruits tels que les variations cycliques, les chocs sectoriels temporaires….D’autre part, pour les autorités, il est préférable d’utiliser l’inflation sous-jacente car celle-ci fournit des informations concernant directement la politique monétaire. L’inflation sous-jacente informe sur les variations du niveau de prix induites et donc contrôlables par la politique monétaire. Elle est ainsi une source d’information importante afin d’évaluer l’efficacité des politiques monétaires effectuées dans le passée et de prévoir les réactions de l’inflation à la politique monétaire actuelle ou future. Sur ce dernier point, l’inflation observée est moins efficace car elle reflète les changements du coût de la vie plutôt que les ajustements de prix résultant des politiques monétaires effectuées.

2- L’inflation sous-jacente est un outil pour communiquer et expliquer la politique monétaire au public.

Il est vraiment important de faire comprendre au public les décisions passées et actuelles des autorités monétaires. Une grande partie dans
Chapitre 1: Inflation sous-jacente: Présentation et Utilité du concept

l’évolution de l’inflation est impactée par les anticipations d’inflation du public. Si le public comprend et supporte les décisions des politiques monétaires, alors, celles-ci impacteront plus efficacement sur le pilotage de l’inflation en assurant solidement les anticipations d'inflation. L’inflation devient alors plus facilement et efficacement contrôlable par la politique monétaire.

Une communication aide clairement la banque centrale à mieux s'acquitter de sa responsabilité envers le public. À cette fin, la stratégie et la communication jouent un rôle crucial. Il existe en pratique plusieurs variables qui permettent de délivrer les messages de la politique monétaire au public mais dans le cadre de cette étude nous ne prêterons attention qu’aux indices d’inflation.

Enfin, la nécessité de calculer et d’utiliser un indicateur d’inflation sous-jacente est illustrée par le fait que de nombreuses banques centrales ont estimé, utilisé et publié sur l’inflation sous-jacente. Ceci est brièvement reporté dans la carte géographique suivante (voire figure 11):

Figure 11: PLANISPHERÈRE DES PAYS QUI CALCULENT UN INDICATEUR D’INFLATION SOUS-JACENTE
Dans cette section, nous nous sommes concentrés sur la mise en évidence de la nécessité du calcul d’un indicateur d’inflation sous-jacente pour le pilotage et l’évaluation de la politique monétaire.

5. Conclusion

Nous avons consacré le premier chapitre de cette thèse à la nature et la nécessité d’un concept d’inflation sous-jacente. Le problème est que, à ce jour, soit environ 30 ans après sa première apparition, les définitions d’inflation sous-jacente n’ont pas encore été unifiées. En pratique, le fait de créer une mesure unique qui regrouperait toutes les mesures de l’inflation sous-jacente est vraiment complexe et peut-être même impossible. Pour cette raison, notre objectif prioritaire est de clarifier la nature de l’inflation sous-jacente au lieu de préciser quelle est la définition idéale de l’inflation sous-jacente. Dans cette optique, la nature de l’inflation sous-jacente, dans ce chapitre, est envisagée à travers deux courants de pensée. Le premier se concentre sur la tendance de moyen à long terme de l’évolution de l’inflation tandis que le second met l’accent sur la tendance commune des évolutions des inflations sectorielles dans l’économie. Ces concepts aboutissent à la création de mesures différentes de l’inflation sous-jacente.

En ce qui concerne le premier de ces courants de pensée, Eckstein, Quah et Vahey, utilisent des modèles économétriques incorporant des relations causales entre l’inflation et les autres grandeurs macroéconomiques pour extraire l’inflation sous-jacente.

L’approche sugérée par le deuxième courant de pensée consiste d’abord à examiner les évolutions de prix des groupes de biens dans l’économie, pour chaque période, puis d’identifier et éliminer les chocs particuliers de prix. Seules les évolutions, qui sont communes des prix sectorielles, sont conservées pour les calculs de l’inflation sous-jacente. Cette
approche peut être entièrement traitée avec les techniques statistiques. Suite à cette approche, Laflèche, Bryan et Cecchetti ont développé un certain nombre de mesures précises pour extraire l’inflation sous-jacente. Pour effectuer ces mesures, une base de données sur les sous-indices de prix de l’IPC est suffisante.

Les différences existantes entre ces deux écoles seront davantage clarifiées lorsque nous présenterons le détail des mesures proposées dans les deux chapitres suivants. Un autre point important que nous voulons encore souligner ici est que ces mesures différentes fournissent des informations diversifiées sur l’inflation sous-jacente, et que chaque mesure possède sa propre utilité.
Chapitre 2

Les approches statistiques

1. Introduction

Après une brève présentation de la nature de l’inflation sous-jacente ainsi de sa nécessité, à partir de ce chapitre, nous allons droit au but principal de cette thèse : « Mesurer un indice d’inflation sous-jacente pour l’économie vietnamienne ». Les théories de l’inflation sous-jacente expliquées dans le premier chapitre serviront de base aux mesures statistiques retenues et qui seront appliqués dans le cas du Vietnam.

Dans ce chapitre, nous nous centrons sur les mesures statistiques basées sur la deuxième école de pensée macro-économique. Ce choix est justifié par le fait que ces mesures sont les plus utilisées dans les banques centrales. La simplicité de ces mesures est également une raison qui favorise ce choix. Les mesures proposées par Bryan, Cecchetti, Laflèche – les auteurs représentatifs de cette école de pensée - seront donc présentées dans ce chapitre. Le principe de base de ces méthodes est d’éliminer les composantes de bruits de l’inflation sous-jacente. Mais il est à noter que chaque auteur a une approche différente qui lui est propre bienque toutes les mesures partent sur le même principe. Il en résulte une liste des mesures diversifiées et différentes. Selon Bryan et Cecchetti, l’observation de la distribution des variations de prix, met en

Toutes ces mesures déterminent finalement les nouveaux jeux de pondérations qui seront utilisés dans le calcul de l’inflation sous-jacente. Comme pour l’inflation observée, l’inflation sous-jacente est alors mesurée par la moyenne pondérée des sous-indices de prix, mais avec les nouveaux jeux de pondérations ainsi calculés.

Un autre point marquant de ce chapitre est l’application d’une mesure dynamique à côté des mesures statiques traditionnelles - le modèle à facteur dynamique. Ce modèle est capable de capturer la dynamique d’un facteur qui peut être vu comme une somme de chocs communs, contemporains et retardés sur l’ensemble des inflations sectorielles. C’est ce facteur dynamique qui génère la tendance générale de l’inflation. Comme pour les autres mesures statistiques, l’estimation de ce modèle conduit à un nouveau jeu de pondérations pour le calcul de l’inflation sous-jacente. L’avantage de ce nouveau jeu de pondérations par rapport aux autres est qu’il est identifié de façon complètement indépendante du jeu de pondérations initialement déterminées par la structure du panier de consommation.

Les limites des bases de données actuellement disponibles sont une sérieuse entrave pour cette étude en particulier et pour les autres études portant sur l’économie vietnamienne en général. Le problème se porte sur trois points principaux : premièremenet, il existe une hétérogénéité entre les bases de données; deuxièmement, les séries temporelles ne sont pas assez longues ;
troisièmement, l’accès à la base de données est strictement limité. Face à ces problèmes, nous avons décidé d’utiliser des données fournies par le Bureau national des statistiques du Vietnam – l’agence responsable de la collecte des données au Vietnam. En outre, notre priorité est d’exploiter pleinement notre base de données collectée et d’étendre autant que possible notre échantillon. Toutefois, par rapport aux bases de données des autres pays, notre base de données est encore réduite. Ce problème est une limitation importante de cette étude.

Le contenu de ce chapitre est organisé comme suit : Les méthodes de calcul de l’inflation sous-jacente sont respectivement expliquées dans les sections de 2 à 5. Les applications de ces mesures dans le cas du Vietnam sont ensuite présentées dans la section 6. La section 7 conclue ce chapitre. Les calculs de ces mesures sont présentés en annexe à la fin du chapitre.

2. La méthode de la moyenne tronquée de Bryan et Cecchetti

L’idée centrale de Bryan et Cecchetti est que les variations de prix qui se concentrent autour du pic de l’histogramme de la distribution de l’inflation contiennent des informations sur l’inflation sous-jacente. Les variations de prix qui se retrouvent dans les deux queues sont simplement les chocs de prix individuels, ou sectoriels qui causent les biais dans l’inflation. Ces auteurs concentrent leur attention sur les mesures qui permettent d’exclure les variations d’inflation situées dans les deux queues de l’histogramme. Celles qui sont dans le centre de la distribution sont donc conservées pour calculer le taux d’inflation sous-jacent. La moyenne tronquée est la technique la plus fréquente dans cette catégorie de méthodes.

La moyenne tronquée, en termes statistiques, revient à exclure les valeurs extrêmes (soit trop grandes soit trop petites) des données, puis de
calculer la moyenne des valeurs restantes. Le fait d’exclure de telles valeurs extrêmes a pour but d’exclure leurs influences sur le taux d’inflation calculé. Bryan et Cecchetti ont appliqué ce principe pour la construction d’une mesure de l’inflation sous-jacente.

En notant le taux d’inflation officiel π_t selon :

$$\pi_t = \sum_{i=1}^{n} \alpha_i \pi_{it}$$

(2.1)

Où π_{it} est le taux d’inflation de la composante i à la date t et α_i la pondération attribuée à cette composante, la moyenne tronquée peut s’écrire :

$$\pi_t^c = \sum_{i=k}^{m} \tilde{\alpha}_i \pi_{it} \text{ avec } \sum_{i=k}^{m} \tilde{\alpha}_i = 1$$

(2.2)

Cet exemple correspond au cas où les composantes ($\pi_1, \ldots, \pi_{k-1}, \pi_{m+1}, \ldots, \pi_m$) ont été éliminées.

Pour pouvoir déterminer les valeurs à exclure, Bryan et Cecchetti portent leur attention sur l’examen de la distribution transversale des données des prix. Ils examinent spécifiquement la distribution normale et la distribution pondérée des variations mensuelles des prix des groupes de biens. Notons que la forme de la distribution transversale dépend fortement de la façon dont on calcule les variations de prix. Ces dernières peuvent porter directement sur les variations mensuelles observées des prix ou porter sur les moyennes mobiles de ces variations observées de prix pour certains mois consécutifs (3 mois ou bien 6 mois, etc). Bryan et Cecchetti pour leur part ont retenu une moyenne sur 36 mois consécutifs avec les données du Japon.

Cet analyse est très importante car elle permet de vérifier les caractéristiques de la distribution pour chaque moment, chaque période et pour l’échantillon entier. Ces caractéristiques identifiées à cette étape fournissent des informations utiles pour la détermination de taux de troncature optimale.
Dans le cas où *la distribution est symétrique* autour de la médiane *avec deux queues courtes*, la plupart des variations de prix sont relativement symétriques et suivent généralement une tendance commune. Dans ce cas, l’inflation d’IPC et l’inflation sous-jacente ne sont pas très différentes, l’une de l’autre. C’est la condition idéale pour avoir une bonne mesure de l’inflation. Le taux de troncature dans ce cas peut être égal à 0 ou très proche de 0. Une remarque importante : pour ce type de distribution, la médiane et la moyenne de la distribution sont proches, de sorte que la mesure de la moyenne et la mesure de la médiane sont des mesures pertinentes de l’inflation sous-jacente et donnent des résultats similaires.

Dans le cas où *la distribution est également symétrique* autour de la médiane mais *avec deux queues longues*, ces queues de distribution contiennent de l’information sur les chocs de prix transitoires qui doivent être éliminées de l’échantillon. Le ratio de troncature, dans ce cas, dépend de la longueur des deux queues dans l’histogramme de la distribution. Le ratio de troncature pour la queue gauche devrait être égal à celui appliqué pour la queue droite. Comme dans le cas précédent, pour cette distribution symétrique, la moyenne tronquée et la médiane tronquée sont des mesures relativement comparables de l’inflation sous-jacente.

Dans le cas où *la distribution est inclinée vers la droite* ; l’asymétrie est positive ; la moyenne est supérieure à la médiane de la distribution et la queue de la distribution s’étend vers la droite. La valeur moyenne de la distribution est dans ce cas amplifiée par quelques variations trop importantes qui se trouvent dans la queue droite de la distribution. De ce fait, l’inflation est amplifiée et il est nécessaire d’exclure ces variations extrêmes. L’inflation

28 La mesure de médiane est un cas particulier de la mesure de la moyenne tronquée avec un taux de troncature de 50% pour chaque queue de la distribution.
Chapitre 2: Les approches statistiques

sous-jacente est alors la moyenne pondérée des valeurs restantes de la distribution et sera inférieure à l’inflation observée. Dans la même logique mais de façon opposée, si *la distribution est inclinée vers la gauche*, la plupart des prix connaissent de grandes variations tandis que peu des prix varient faiblement, et donc, dans ce cas il est clair que l’inflation sous-jacente est supérieure à l’inflation observée. Dans ce cas – les distributions sont asymétriques et il est convient d’appliquer des taux de troncature différents pour les deux queues29.

L’adéquation des mesures de moyenne tronquée dépend essentiellement du taux de troncature appliqué pour chaque queue de la distribution. Ce taux est à la fois choisi en se basant sur les caractéristiques propres à chaque distribution. Un taux de troncature raisonnable permet de capturer la partie centrale de la distribution pour calculer l’inflation sous-jacente. Ce fait correspond bien à la pensée de Bryan et Cecchetti que l’inflation sous-jacente est la tendance centrale de l’inflation. Le taux de troncature peut être différent pour chaque queue et dépendre de la forme de chaque distribution.

\[29\] Remarque importante : Dans le cas où la distribution est asymétrique, il est convient de déterminer des taux de troncature différents pour les deux queues car ces queues n’ont pas de même longueur. Mais ceci ne signifie pas qu’il est nécessaire de retenir un taux de troncature plus grand pour la queue la plus longue de la distribution. Par exemple, si la distribution est décalée vers la droite, ceci ne signifie pas qu’il est nécessaire d’avoir un taux de troncature plus grand pour la queue droite par rapport au taux appliqué à la queue gauche. Dans ce cas, ceci signifie qu’il existe des valeurs extrêmes dans la queue droite qui doivent être éliminées par une troncature dans cette queue. Pour déterminer les taux de troncature optimaux, ces informations générales ne sont pas suffisantes. Il est important à faire la détermination de taux de troncature optimal au cas par cas.
entre cette mesure et la mesure de médiane, Meyer et VenKatu n’ont pas trouvé de preuve statistique significative que la mesure de la médiane puisse dominer la mesure de la moyenne tronquée. De plus, des comparaisons effectuées avec des taux de troncature différents montrent qu’un taux de troncature élevé peut conduire à une estimation plus précise de l’inflation sous-jacente.

3. Les mesures proposées par Laflèche et al.

On note :

\[\varepsilon_t = \mu_t + \eta_t \]

(2.3)

30 Ce résultat peut présenter certains problèmes. D’abord, il diffère légèrement du résultat de Bryan et Cecchetti. Bryan et Cecchetti dans leurs études sur le Japon (mai 1999), ont conclu que « même un petit taux de troncature peut améliorer considérablement les estimateurs de l’inflation sous-jacente à haute fréquence ». Sur les données du Japon, ils ont constaté que « la troncature de 5% à chaque queue améliore respectivement de 57% et 60% l’efficacité de l’estimateur de l’inflation sous-jacente». Ensuite, l’inflation sous-jacente avec un taux de troncature élevé rend difficile son acceptation et son adoption comme un indice de l’inflation par le public.
Chapitre 2: Les approches statistiques

où

$$\epsilon_t = \text{Effets des chocs de prix relatif}$$

$$\mu_t = \text{Effet des chocs relatifs temporaires}$$ - le premier type de choc de prix relatif.

$$\eta_t = \text{Effets des chocs relatifs permanents}$$, le deuxième type de choc de prix relatif.

Les chocs de prix relatif de nature transitoire (μ_t) s’annulent rapidement à cause de leurs caractéristiques réversibles. Par exemple, le prix de certains produits agricoles augmente dans les périodes hors saison ou dans les périodes où ont lieu des phénomènes climatiques particuliers. Mais ces augmentations s’ inversent rapidement lorsque le climat retourne à son niveau « normal ».

Ce type de chocs n’a pas d’impact sur l’inflation à long terme mais il peut faire varier fortement l’inflation dans certains périodes. Ces variations sont considérées comme des erreurs des mesures de l’inflation et doivent être exclues lors du calcul de l’inflation sous-jacente.

Les chocs relatifs permanents η_t influencent les prix et l’inflation de façon différente. Leurs effets ne durent pas longtemps sur l’inflation mais impactent définitivement les prix. Ils sont donc considérés comme des chocs permanents. Pour Laflèche, les chocs dont l’impact sur l’inflation dure plus longtemps que le décalage de la politique monétaire sont classés dans le groupe des chocs relatifs permanents. Par exemple, dans le cas du Canada, le décalage de la politique monétaire est de 24 mois. Les chocs dont l’impact dure plus que 24 mois sont donc classés dans le groupe des chocs permanents.
De là, Laflèche a proposé deux scénarios : 1/ Éliminer toutes les chocs μ_t et η_t ; 2/ d’éliminer uniquement μ_t lors du calcul de l’inflation sous-jacente. La question clé est donc celle de l’exclusion de η_t. Pour la mesure de l’inflation sous-jacente, μ_t doit surement être éliminé car il est considéré comme une erreur de mesure. Mais il en va autrement pour le cas de η_t. Le caractère permanent de η_t dans certains cas justifie pour Laflèche de garder η_t dans le calcul de l’inflation sous-jacente. Néanmoins, cet auteur remarque aussi que cette composante peut être difficilement interprétable par le grand public. Or, il est très important que le public comprenne sa nature et ses impacts sur l’inflation. En effet, dans le cas contraire, si on retient cette composante dans l’inflation sous-jacente mais que le public ne comprend pas clairement sa nature, sa présence peut accroître l’inflation anticipée qui à son tour fera augmenter l’inflation. Pour Laflèche, on tient donc compte de cette composante si et seulement si on peut expliquer correctement sa nature au public.
Chapitre 2: Les approches statistiques

On a vu que, pour mesurer l’inflation sous-jacente, Laflèche met l’accent sur la détermination des composantes à exclure et sur la méthode à utiliser pour exclure cette composante. Plusieurs mesures de l’inflation sous-jacente sont ainsi proposées :

- Exclusion définitive de certaines composantes de l’inflation d’IPC;
- Moyenne pondérée de la distribution réduite;
- Médiane pondérée;
- Mesure à pondérations réduites…

Parmi ces mesures, la moyenne tronquées et la médiane pondérée sont relativement proches des mesures proposées par Bryan, Cecchetti ou de Roger. Dans cette partie, nous ne nous concentrerons donc que sur : l’exclusion définitive de certaines composantes de l’inflation d’IPC et la mesure à pondération réduite.

- **Exclusion définitive de certaines composantes de l’inflation d’IPC**

Pour mesurer l’inflation, il faut faire abstraction des variations de prix trop importantes ou trop petites car elles sont la représentation des chocs d’offre temporaires. Les prix des produits alimentaires et des produits énergétiques varient fréquemment, fortement et de façon imprévue, pour des raisons indépendantes de la politique monétaire. Ces deux catégories de produits sont représentatifs des biens soumis à des chocs d’offre temporaires. Au vu de ces arguments, Laflèche préconise d’exclure les indices de prix de ces deux groupes de produits du calcul de l’IPC. Les indices restant reçoivent alors des nouvelles pondérations et sont utilisés lors du calcul de l’inflation sous-

31 Ce sont les mesures qu’il a proposées dans son premier papier sur l’inflation – 1997/9.
Chapitre 2: Les approches statistiques

... jacente. Le nouvel indice est nommé CPIxFE – IPC hors aliments et énergie – conformément à sa formule.

L'avantage de cette mesure est d'être très simple et peut être mise à jour mois par mois. Le calcul peut être simplement et immédiatement effectué au moment où les données des prix de l’IPC sont mises à jour chaque mois. Cet estimateur peut donc fournir des informations continues à la banque centrale et au public sur l’état de l’inflation sous-jacente.

Néanmoins, cette mesure présente également certaines limites.

D’abord, l’alimentation et l’énergie ne sont pas les seuls produits dont les prix varient anormalement et de façon imprévisible. Exclure uniquement les indices de prix de ces deux groupes de produit n’est donc pas toujours judicieux pour le calcul de l’inflation sous-jacente.

Ensuite, l’exclusion permanente de ces deux sous-indices n’est pas toujours raisonnable. Certes, les prix de l’alimentation et de l’énergie sont souvent les plus volatils et sont hors du contrôle de la politique monétaire, mais, il existe certainement des périodes où ces prix sont stables et suivent la tendance commune des autres prix. En outre, au fur et à mesure que le temps passe, il est possible que cette exclusion ne soit plus adaptée du fait de la présence de nouveaux candidats à exclure. Donc, cette formule doit être périodiquement révisée pour re-identifier les indices de prix à exclure.

En résumé, bien que ces méthodes présentent des limites, cette mesure est souvent retenue du fait de sa simplicité. La preuve en est que beaucoup de pays appliquent cette méthode pour calculer leurs indices d’inflation sous-jacente. Cependant, chaque pays a sa liste propre des biens ou groupes de biens à exclure, qui comprend en particulier l’alimentation et l’énergie. Plus tard, Laflèche et ses collègues étendent leur liste d’exclusions et proposent d’exclure...
les variations de prix entrainées par des modifications du système d’impôt indirect au Canada32.

- \textit{Mesure à pondération réduite}

Avec la mesure de l’exclusion mentionnée au-dessus, le fait d’exclure un sous-indice de prix du calcul de l’inflation sous-jacente revient à lui attribuer une pondération nulle. En assignant d’une pondération zéro, on annule ainsi complètement l’influence de ces prix sur l’inflation. Cependant, cette mesure contient les mêmes inconvénients que celle a été analysée plus haut. Pour cette raison, \textit{au lieu d’éliminer complètement et définitivement} ces sous-indices de prix, Laflèche, en développant une mesure alternative, propose de \textit{réduire} l’influence de ces composantes en leur attribuant des pondérations réduites mais non nulles. Cette nouvelle mesure est alors appelée la mesure de pondération réduite. Le principe de cette mesure est que \textit{plus le sous-indice est volatile, plus sa pondération doit être réduite}. Le niveau de volatilité est identifié à partir de l’amplitude de l’écart-type de chaque sous-indice de prix33.

\textit{La procédure de calcul est la suivante:}

Pour chaque sous-indice, on divise sa pondération initiale par son écart-type standardisé. On normalise ensuite les nouvelles pondérations en divisant chaque nouvelle pondération par leur total34. Il en résulte finalement une série de pondérations modifiées. L’inflation sous-jacente est donc mesurée comme la

\footnotesize

32 Cette mesure de Laflèche est nommée CPIxFET = IPC exclue l’alimentation (F), l’énergie (E) et l’impôt (T).

33 Cette moyenne est calculée pour un horizon de temps précis.

34 Pour assurer que la somme totale des pondérations égale à 100\%.
Chapitre 2: Les approches statistiques

La moyenne pondérée des sous-indices de prix en utilisant les pondérations modifiées qui viennent d’être calculées.

La mesure correspondante de l’inflation sous-jacente est alors :

\[\pi^C_t = \sum_{i=1}^{n} \beta_i \pi_{it} \]

(2.4)

Avec \(\beta_i = \frac{\hat{\alpha}_i}{\sum_{i=1}^{n} \alpha_i} \) et \(\hat{\alpha}_i = \frac{\alpha_i}{\sigma_i} \)

(\(\alpha_i \) étant la pondération officielle de la composante de prix \(P_i \) dans l’IPC).

L’avantage important de cette mesure par rapport à la mesure d’exclusion est qu’elle n’exclue aucune composante de la formule de l’inflation. Elle réduit simplement l’importance de certains prix trop volatils en modifiant leur pondération dans la formule de l’inflation sous-jacente. Semblable à la mesure d’exclusion, cette mesure est largement utilisée et publiée dans plusieurs pays.

Par contre, la définition de l’inflation sous-jacente ne coïncide pas parfaitement avec la mesure proposée. En outre, la distinction intéressante des effets de deux types de chocs d’offre temporaire \(\mu_t \) et \(\eta_t \) n’est presque pas mentionnée dans cette mesure de l’inflation sous-jacente.

En général, les approches statistiques sont simples à comprendre, à interpréter et faciles à effectuer. Il n’existe pas de grande distinction entre l’efficacité de ces mesures. En particulier pour la mesure de médiane pondérée, l’étude de Laflèche sur le cas du Canada a montré qu’elle n’est pas une mesure optimale. Ceci est illustré par le fait que l’influence de la réduction du taux d’imposition sur le tabac mise en œuvre en 1994 est encore présente dans l’inflation sous-jacente estimée par la mesure de médiane pondérée tandis qu’elle est complètement éliminée avec les autres mesures.
4. **Le modèle à facteur dynamique**

L’idée centrale est que chacun des postes de l’inflation sectorielle peut être décomposé en deux éléments, un élément est commun à tous les autres postes et un terme de prix relatif selon :

\[\pi_{it} = \Lambda_i F_t + \varepsilon_{it} \quad (2.5) \]

Où \(F_t \) est un facteur commun et chaque taux d’inflation \(\pi_t \) est relié au facteur commun par les coefficients de la matrice \(\Lambda_i \).

L’inflation sous-jacente est alors la part de l’inflation reliée au facteur commun.

En d’autres termes, le taux d’inflation de la composante de prix \(i \) peut être décomposé selon :

\[\pi_{it} = \pi_t^* + \pi_{it}^\delta \quad (2.6) \]

Où \(\pi_t^* \) est considéré comme la tendance *commune* entre les différentes composantes de l’indice des prix et \(\pi_{it}^\delta \) qui représente les effets des chocs *sectoriels spécifiques*.

L’indice agrégé d’inflation peut être construit à partir d'un ensemble de sous-indices \(\pi_{it} \) en utilisant un jeu de poids \(w_{lt} \), comme suite :
Chapitre 2: Les approches statistiques

\[\pi_t = \sum_{i=1}^{n} \pi_{it} * w_{it} \]
\[(2.7) \]

En combinant ces deux équations, il vient ensuite :

\[\pi_t = \pi_t^* + \sum_{i=1}^{n} \pi_{it}^* * w_{it} \]
\[(2.8) \]

Il est évident que, à partir de cette formulation, la déviation de l’indices de prix mesuré par rapport à son niveau sous-jacent est donnée par le deuxième terme de droite, soit \(\sum_{i=1}^{n} \pi_{it}^* * w_{it} \).

Or ce terme est en pratique non nul à chaque instant t et génère donc un biais entre l’inflation observée et sa tendance sous-jacente. L’objectif de Bryan et Cecchetti est donc de calculer une estimation de l’inflation qui élimine ces biais, à partir des données des sous-indices des prix à la consommation. Le modèle proposé est le suivant :

\[\pi_{it} = \pi_t^* + \pi_{it}^S \]
\[(2.9) \]

\[\Psi(L)\pi_t^* = \delta + \eta_t \]
\[(2.10) \]

\[\Phi(L)\pi_{it}^S = \varepsilon_t \]
\[(2.11) \]

Les composantes \(\pi_{it} \) représentent les taux de croissance observé des postes des indices des prix (où \(i = 1 \ldots n \) représentent les sous-indices de l’IPC) et sont définis comme des taux d’inflations sectoriels. \(\pi_t^* \) et \(\pi_{it}^S \) sont des vecteurs modélisés comme des structures stochastiques linéaires. \(\delta \) est une constante qui induit le niveau moyen de l’inflation sous-jacente. \(\Psi(L) \) et \(\Phi(L) \) sont respectivement un vecteur et une matrice de retards et polynomiale avec racine unitaire ; \(\eta_t \) et \(\varepsilon_t \) sont respectivement un scalaire et un vecteur de type bruit blanc. Comme les \(\pi_{it}^S \) sont idiosyncractiques, ils sont tous non corrélées à l’élément commun \(\pi_t^* \). Cette hypothèse fournit une contrainte d’identification utile pour l’estimation du modèle. L’interprétation économique de cette contrainte est que l’inflation sous-jacente est supposée être non corrélée avec
les chocs des prix relatifs. π_t^* est ainsi supposé suivre un processus AR(p) et les chocs idiosyncratisques u_t suivent un AR(k).

Ce type de modèle peut être transformé sous une forme état mesure et être estimé à l’aide de la technique du filtre de Kalman. Il reste à identifier le terme δ. Pour faciliter l’estimation, Stock et Watson (1989) ont donc proposé un modèle alternatif qui est immédiatement estimable sans condition sur δ et δ est alors calculé à l’aide des informations fournies par l’estimation du modèle. Une fois que les paramètres inconnus du modèle sont estimés, l’élément commun π_t^* peut être extrait.

Le modèle initial est écrit sous forme matricielle comme suit :

\[
\begin{pmatrix}
\pi_{1,t} \\
\pi_{2,t} \\
\vdots \\
\pi_{n,t}
\end{pmatrix}
=
\begin{pmatrix}
\gamma_1 \\
\gamma_2 \\
\vdots \\
\gamma_n
\end{pmatrix}
\pi_t^* +
\begin{pmatrix}
\pi_{1,t}^s \\
\pi_{2,t}^s \\
\vdots \\
\pi_{n,t}^s
\end{pmatrix}
\tag{2.12}
\]

\[
\pi_t^* = \varphi_1 \pi_{t-1}^* + \varphi_2 \pi_{t-2}^* + \cdots + \varphi_p \pi_{t-p}^* + \delta + \eta_t
\tag{2.13}
\]

\[
\begin{pmatrix}
\pi_{1,t}^s \\
\pi_{2,t}^s \\
\vdots \\
\pi_{n,t}^s
\end{pmatrix}
=
\begin{pmatrix}
\phi_{1,1}\pi_{1,t-1}^s + \phi_{1,2}\pi_{1,t-2}^s + \cdots + \phi_{1,k}\pi_{1,t-k}^s \\
\phi_{2,1}\pi_{2,t-1}^s + \phi_{2,2}\pi_{2,t-2}^s + \cdots + \phi_{2,k}\pi_{2,t-k}^s \\
\vdots \\
\phi_{n,1}\pi_{n,t-1}^s + \phi_{n,2}\pi_{n,t-2}^s + \cdots + \phi_{n,k}\pi_{n,t-k}^s
\end{pmatrix}
+
\begin{pmatrix}
\varepsilon_{1,t} \\
\varepsilon_{2,t} \\
\vdots \\
\varepsilon_{n,t}
\end{pmatrix}
\tag{2.14}
\]

Après réécriture sous forme de modèle état-mesure, le modèle devient un système composé de deux équations :
L’équation de mesure :

\[
\pi_t = (\gamma N'_{(p,1)} K'_{(nk,p)}) \left(\begin{array}{c}
\Pi_t^r \\
\Pi_t^s
\end{array} \right)
\]

(2.15)

L’équation d’état :

\[
\left(\begin{array}{c}
\Pi_t^r \\
\Pi_t^s
\end{array} \right) = \left(\begin{array}{cc}
\varphi'_{pp} & 0_{(p,nk)} \\
0_{(nk,p)} & \phi'_{(nk,nk)}
\end{array} \right) \left(\begin{array}{c}
\Pi_{t-1}^r \\
\Pi_{t-1}^s
\end{array} \right) + \left(\begin{array}{c}
\delta \\
0_{(p+nk-1,1)}
\end{array} \right) + \left(\begin{array}{cc}
N_{(p,1)} & 0_{(p,n)} \\
0_{(nk,1)} & K_{(nk,n)}
\end{array} \right) \left(\begin{array}{c}
\eta_t \\
\epsilon_t
\end{array} \right)
\]

(2.16)

Avec

\[
\Pi_t^* = (\pi_t^*, \pi_{t-1}^*, ..., \pi_{t-p+1}^*)
\]

(2.17)

\[
\Pi_t^s = (\pi_t^s, \pi_{t-1}^s, ..., \pi_{t-k+1}^s)
\]

(2.18)

Sous forme compacte, ce système peut encore s’écrire :

\[
\Pi_t = Z_t' \alpha_t
\]

(2.19)

\[
\alpha_t = T_t \alpha_{t-1} + R_t \zeta_t + \bar{\alpha}
\]

(2.20)

Avec

\[
\alpha_t = \left(\begin{array}{c}
\Pi_t^r \\
\Pi_t^s
\end{array} \right)
\]

(2.21)

\[
Z_t' = (\gamma N'_{(p,1)} K'_{(nk,p)})
\]

(2.22)

\[
T_t = \left(\begin{array}{cc}
\varphi'_{pp} & 0_{(p,nk)} \\
0_{(nk,p)} & \phi'_{(nk,nk)}
\end{array} \right)
\]

(2.23)
Chapitre 2: Les approches statistiques

\[R_t = \begin{pmatrix} N_{(p,1)} & 0_{(p,n)} \\ 0_{(nk,1)} & K_{(nk,n)} \end{pmatrix} \] (2.24)

\[\zeta_t = \begin{pmatrix} \eta_t \\ \epsilon_t \end{pmatrix} \] (2.25)

\[\bar{\alpha} = \begin{pmatrix} \eta_t \\ \epsilon_t \end{pmatrix} \] (2.26)

Le modèle alternatif proposé par Stock et Watson (1989) est une version centrée du modèle initial qui peut s’écrire :

\[\Pi_t = Z_t'\bar{\alpha}_t \] (2.27)

\[\bar{\alpha}_t = T_t \bar{\alpha}_{t-1} + R_t \zeta_t \] (2.28)

Dans cette version réduite, le modèle est estimable à l’aide de la technique du filtre de Kalman et l’estimation du modèle permet de calculer \(\pi_t^* \) et \(\delta \).

Selon Stock et Watson, \(\pi_t^* \) peut être exprimé comme une combinaison linéaire des valeurs présents et passées des variables constituantes \(\pi_{it} \) :

\[\pi_t^* = W(L)\pi_{it} \] (2.29)

Où \(W(L) \) est la matrice de pondération. La première ligne de \(W(L)\pi_{it} \), \(e'_t \), donne le poids de chacune des termes \(\pi_{it} \) dans \(\pi_t^* \):

\[\pi_t^* = e'_t W(L)\pi_{it} \] (2.30)

Or, d’après le modèle initial, on a :

\[\Psi(L)\pi_t^* = \delta + \eta_t \] (2.31)

On en déduit donc :

\[\delta = \Psi(1)W(1)\bar{\pi}_{it} \] (2.32)
Techniquement la difficulté s’est déplacée à l’identification de $W(1)$. Mais $W(1)$ peut être directement obtenue à partir des matrices de gain identifiées avec le processus du filtré de Kalman effectué dans l’étape précédente. Le modèle est donc complètement identifié et estimé.

Notons que, l’inflation sous-jacente identifiée ci-dessus peut s’écrire selon :

$$\pi_t^* = \sum_{i=1}^{n} \bar{w}_i \pi_{it} \quad (2.33)$$

Où \bar{w}_i (avec $i = 1 \ldots n$) sont les nouvelles pondérations.

Le modèle à facteur dynamique revient donc à estimer des nouvelles pondérations pour chacune des composantes π_{it} dans le calcul de l’inflation. Ces nouvelles pondérations sont identifiées en se basant sur les impulsions reçues par chaque inflation sectorielle à partir du choc commun à ces inflations sectorielles. Ces pondérations sont donc différentes de celles utilisées pour le calcul de l’inflation observée à partir de l’IPC35.

Étant de même nature que les méthodes de pondération réduite, cette mesure de l’inflation sous-jacente possède certainement des avantages similaires aux méthodes de pondération réduite. Elle a de plus un certain avantage par rapport aux autres méthodes statistiques : son estimation est basée sur la technique de maximum de vraisemblance (avec le filtre de Kalman) ce qui permet de calculer les écarts-types des paramètres et des variables du modèle. Ces écarts-types fournissent ensuite une mesure du degré d’incertitude associé aux variables estimées et de la qualité statistique globale du modèle.

35 Les poids pour chaque π_{it} pour calculer l’inflation sur la base de l’IPC sont identifiés en se basant sur le leurs parts dans la consommation globale des ménages. Pour cette raison, ce type d’inflation est défini comme l’inflation du coût de la vie.
Une particularité importante de la méthode de Stock et Watson est d’être dynamique, contrairement aux méthodes statistiques précédemment présentées qui sont statiques. D’autre part, l’estimation du modèle par la méthode du filtre de Kalman est sensible au choix de l’échantillon et à l’horizon de l’analyse. Les estimations peuvent donc évoluer avec la mise à jour de la base de données. L’utilisation de ce type de méthode entraîne donc systématiquement un besoin de révision substantielle des estimations antérieures de l’inflation sous-jacente avec les nouvelles données disponibles.

En outre, l’estimation dépend fortement de la structure du modèle, notamment lors de la construction des composantes inobservables du modèle avec le choix du nombre de retards. Ces composantes étant des variables non observables il n’existe pas de méthode unique pour les évaluer.

En pratique, cette approche est moins fréquemment mise en pratique que les autres approches du groupe des mesures statistiques. En effet, pour avoir une bonne estimation de ce modèle à facteur dynamique, il est nécessaire de travailler sur des séries statistiques assez longues pour assurer la convergence des estimateurs. D’autre part, la limite des logiciels ne permet pas de traiter ce modèle avec une grande base de données contenant trop de séries temporelles. Tandis que pour les autres méthodes statistiques, les calculs peuvent être effectuées sans souci sur la longueur des séries ni sur le nombre des séries.

5. **Plusieurs autres méthodes moins fréquentes**

Les méthodes de filtrage

Tandis que les mesures présentées au-dessus demandent une base de données transversale y compris tous les sous-indices de prix de l’IPC, pour les mesures dites de filtrage seul l’indice de l’IPC est nécessaire. Parmi les filtres les plus courants, on peut citer le filtre X11, le filtre HP,…La série d’IPC, une
fois filtrée devient de fait plus lisse, et peut être interpréter comme la tendance de l’inflation.

Le filtre le plus simple est *le taux de changement annuel* de l’IPC (soit \((P_t - P_{t-12})/P_{t-12} \) où \(P_t \) est le niveau de l’IPC pour le mois \(t \)). Cet indice calcule le changement de prix du même mois, un an auparavant. L’année est une période suffisamment longue pour que les effets saisonniers sur les prix s’annulent. Par exemple, au Vietnam et dans autre pays asiatique, de Janvier à Février, la consommation est toujours plus forte que dans les autres mois de l’année car c’est la période des fêtes traditionnelles. Donc, le prix des biens et services dans cette période augmente très fortement. Cette augmentation saisonnière est éliminée si l’inflation est calculée comme le changement annuel de l’IPC. De façon similaire, certains indices de prix désaisonnalisés sont considérés comme l’indice de référence pour le calcul de l’inflation sous-jacente.

Le Filtre de Hodrick-Prescott est une méthode de lissage largement utilisée par les macroéconomistes qui permet d’obtenir une estimation des composantes de tendance de long terme dans le cadre d’une série chronologique. La méthode a été utilisée, pour la première fois, par Hodrick et Prescott (1997) afin d’analyser le cycle des activités des entreprises américaines de l’après-guerre. Du point de vue technique, le ‘’Filtre’’ de Hodrick et Prescott (HPF) est un outil facile et linéaire permettant de calculer des séries intégrées d’une variable donnée en réduisant au *minimum la variance de cette variable en fonction d’une autre variable*. Étant donné que la recherche de l’inflation sous-jacente vise à extraire de l’inflation non corrigée sa partie persistante, cette technique de filtrage devrait s’avérer efficace pour faire la distinction entre mouvement persistant et mouvement transitoire de l’inflation. Un moyen simple et populaire consiste donc à appliquer la technique du filtre HP permet de réduire l’instabilité des séries et peut mieux capturer la composante persistante de l’inflation.
La série d’inflation sous-jacente obtenue avec le filtre de Hodrick et Prescott est égale à la série \(\pi_t^c \), solution du programme suivant :

\[
\min_{\pi_t^c} \sum_{t=1}^{T} (\pi_t^c - \pi_t)^2 + \lambda \sum_{t=2}^{T-1} [(\pi_{t+1}^c - \pi_t^c) - (\pi_t^c - \pi_{t-1}^c)]^2 \quad (2.34)
\]

Où \(\lambda \) est un paramètre de lissage et \(\pi_t \) est la série de l’inflation observée.

L’avantage de ces méthodes de filtrage est leur simplicité de mise en pratique. De plus, ces techniques ne dépendent pas fortement de la longueur de la série retenue. Le filtre de la variation annuelle et la mesure d’ajustement saisonnier sont notamment retenues dans la base données Datastream.

Par contre, la plupart des mesures obtenues par filtrage ne satisfont pas aux critères théoriques de détermination de l’inflation sous-jacente car elles ne sont liées à aucune définition de l’inflation. Ce sont purement les techniques statistiques de lissage qui permettent d’éliminer les perturbations des séries temporelles. Elles ne sont donc pas considérées comme des mesures officielles de l’inflation sous-jacente.

Elles sont néanmoins largement appliquées du fait de leur simplicité. En général, elles donnent des bons résultats que pour des séries chronologiques peu volatiles. Dans le cas de séries très variables comme l’inflation, ces techniques de filtrages sont donc souvent peu efficaces.

6. **Application au cas du Vietnam**

6.1. **Base de données**

Pour le Vietnam, nous disposons d’une base de données pour la période d’observation 2009 – 2013. L’IPC est publiée par le Bureau national des statistiques. Il y a 11 sous-indices de niveau 1 et 32 sous-indices de niveau 2. Ces derniers sont respectivement les indices de prix des groupes de produits...
d’alimentation (FOOD), produits de denrée alimentaire (FOODSTUFF) et produits pour la restaurant (FOOD SERVICES), qui sont les sous-indices de l’indice de niveau 1 : l’indice de prix de groupe des biens et services d’alimentation (FOODTOTAL). Dans cette étude, nous utilisons ces trois sous-indices de niveau 2 à la place de FOODTOTAL – sous-indice de niveau 1. Ces trois sous-indices sont désormais considérés dans cette étude comme ses sous-indices de niveau 1. Il en résulte une base de données composée de 13 sous-indices de prix. Cet approche ne fait pas changer la nature de ces indices, mais, permet d’étendre un peu notre échantillon qui est encore très limité.

Figure 13: PONDÉRATION DES SOUS-INDICES D’INFLATION

Cette approche a ainsi un autre avantage important. L’indice de FOODTOTAL occupe une part trop importante dans la construction de l’IPC. Ses variations affectent donc fortement l’évolution de l’IPC ainsi que la forme de la distribution des variations de prix. Or cela constitue un obstacle pour le choix des mesures optimales d’inflation sous-jacente. La décomposition de cet indice en trois sous-indices permet donc de contenir cet inconvénient. Voir les graphiques des pondérations des sous-indices pour le détail (voir figure 13).

Les sous-indices et leur pondération sont reportés dans le tableau 4 suivant :
Tableau 4: 13 SOUS-INDICES DE PRIX DU VIETNAM

<table>
<thead>
<tr>
<th>Groupes de biens et services</th>
<th>Symbole</th>
<th>Pondération (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Denrées alimentaires</td>
<td>FOODSTUFF</td>
<td>24.35</td>
</tr>
<tr>
<td>2 Équipements du logement</td>
<td>HOUSING</td>
<td>10.01</td>
</tr>
<tr>
<td>3 Transports</td>
<td>TRANS</td>
<td>8.87</td>
</tr>
<tr>
<td>4 Logements</td>
<td>HOUSEHOLD</td>
<td>8.65</td>
</tr>
<tr>
<td>5 Alimentations</td>
<td>FOOD</td>
<td>8.18</td>
</tr>
<tr>
<td>6 Restaurations</td>
<td>FOOD SERVICES</td>
<td>7.40</td>
</tr>
<tr>
<td>7 Vêtements</td>
<td>GARMENT</td>
<td>7.28</td>
</tr>
<tr>
<td>8 Éductions</td>
<td>EDU</td>
<td>5.72</td>
</tr>
<tr>
<td>9 Santé</td>
<td>HEALTH</td>
<td>5.60</td>
</tr>
<tr>
<td>10 Boissons</td>
<td>BEV</td>
<td>4.03</td>
</tr>
<tr>
<td>11 Cultures</td>
<td>CULTURE</td>
<td>3.83</td>
</tr>
<tr>
<td>12 Poste</td>
<td>POST</td>
<td>2.72</td>
</tr>
<tr>
<td>13 Autres</td>
<td>OTHERS</td>
<td>3.34</td>
</tr>
</tbody>
</table>

La période de l’échantillon est limitée de 2009 :01 à 2013 :09 pour des raisons objectives. Il y a beaucoup de changements dans la base de données de l’IPC au cours de cette période par rapport aux périodes précédentes. Par exemple, certains indices de niveau 2 commencent à être introduits, un indice de niveau 1 est décomposé en deux sous-indices de niveau 236, les pondérations

36 Les trois sous-indices de l’indice de prix des produits alimentaires sont officiellement publiés.

L’indice combiné les prix du transport et de la communication s’est désormais décomposé en deux indices distincts POST et TRANS. Notons que les prix des produits concernant la communication et le transport suivent des tendances très différentes, parfois l’une a inverse de l’autre. Alors, cette nouvelle
de ces indices sont fortement changées. Or, ces modifications rendent délicat le regroupement des données pour des périodes antérieures et postérieures à 2009.37

Figure 14: LES TREIZE Sous-Indices de PRIX DU VIETNAM (2009 :01 – 2013 :09)

6.2. Quelques statistiques représentatives de l’inflation au Vietnam

37 Ces problèmes peuvent être résolus dans le cas où nous travaillons sur une base de données plus détaillée, avec des indices de niveau 2, 3 ou 4. Mais dans cette étude, nous n’avons principalement que les indices au niveau d’agrégation le plus élevé de la base de données d’IPC.

L’écart-type reflète la dispersion de la distribution pour chaque mois. On voit que l’écart-type varie dans le temps et est très important par rapport à la moyenne. Notamment, pendant les périodes où l’inflation atteint des niveaux élevés, l’écart-type devient plus large que la normale. Un exemple typique est...
le milieu de l’année 2011, où l’écart-type dé passe même la moyenne. Ceci peut être expliqué par le fait que certaines variations anormales de prix ont été amplifiées par leurs pondérations. Ces variations initialement larges, sont ensuite multipliées par leurs pondérations qui sont également importantes. De façon similaire, la variation des erreurs est ainsi amplifiée, voire même multipliée par 2. De même manière, l’écart-type standardisé est également amplifié. Il en résulte une distribution très asymétrique. En particulier, à partir du milieu de l’année 2012, l’écart-type est devient extrêmement large tandis que l’inflation se maintient à un niveau normal. Ce fait est dû à l’augmentation continue de prix du groupe HEALTH, avec des variations parfois très importantes, de l’ordre de 20% à 40%, et même 60% pendant quelques mois.

La forme de la distribution

Au cours de la période allant de 2009 :01 à 2013 :09, la distribution de l’inflation du Vietnam est assez asymétrique. Avant 2012, elle est principalement inclinée vers la gauche et puis, à partir du milieu de l’année 2012, elle est fortement inclinée vers la droite. La distribution pondérée, par contre, possède une forme moins asymétrique que celle de la distribution normale, mais les propriétés restent préservées. Avant 2012, la distribution pondérée est inclinée vers la gauche puis après le milieu de l’année 2012, vers la droite. Cette asymétrie vers la droite, comme indiquée ci-dessus, est due au fait que les prix du groupe de biens HEALTH augmentent anormalement, près de 40-50-60% tandis que le prix des 12 autres catégories de biens ne s’accroissent que légèrement. Donc, la période de recherche est divisée en deux : avant 2012 :05 et après 2012 :05. La première période est caractérisée par l’asymétrie vers la gauche et la deuxième période par l’asymétrie vers la droite.

L’aplatissement mesure la hauteur de la distribution et indique la concentration de la distribution. Pour la plupart des cas, comme indiqué dans
les études de Bryan, Roger, la distribution des variations de prix est leptokurtique. La distribution dans le cas du Vietnam est globalement comparable à ces cas standards mais elle est moins leptokurtique que les autres. En effet, les deux queues de cette distribution sont en effet assez longues.

Les corrélations des moments de l’inflation

Tableau 5: MATRICES DES CORRÉLATIONS

<table>
<thead>
<tr>
<th></th>
<th>Moyenne</th>
<th>Écart type</th>
<th>Asymétrie</th>
<th>Aplatissement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moyenne</td>
<td>12 200.41</td>
<td>0.93</td>
<td>0.26</td>
<td>0.78</td>
</tr>
<tr>
<td>Écart type</td>
<td>2 338.06</td>
<td>517.57</td>
<td>0.49</td>
<td>0.89</td>
</tr>
<tr>
<td>Asymétrie</td>
<td>213.10</td>
<td>83.09</td>
<td>54.77</td>
<td>0.71</td>
</tr>
<tr>
<td>Aplatissement</td>
<td>963.37</td>
<td>220.98</td>
<td>58.60</td>
<td>122.10</td>
</tr>
</tbody>
</table>

On a vu que la corrélation entre la moyenne et l’écart-type est positive et très importante, de l’ordre de 0.93. Cette relation positive est bien claire pendant les périodes d’inflation élevée. Plus la moyenne est élevée, plus l’écart type est important. Par conséquence, les prix varient fortement et de manière dispersée. Ceci est conforme à la théorie de Golob(1993). Le taux d’inflation exhibe également une relation positive avec l’asymétrie de la distribution, avec un coefficient de corrélation de 0.26 correspondant au résultat retenu dans l’étude de Jonathan (0.25)\(^38\). Ce résultat est également conforme aux résultats des auteurs Ball et Mankiw(1992a), Balke et Wynne(1996) selon lesquelles plus le taux d’inflation est élevé, plus la distribution est asymétrique vers la droite.

\(^38\) (Kearns, J, 1998), The distribution and measurement of inflation
L’observation de la distribution de l’inflation du Vietnam suggère donc les commentaires suivants.

Premièrement, la distribution est clairement asymétrique de sorte qu’il faudra envisager des taux de troncatures différents pour les deux queues de la distribution.

Deuxièmement, les différences importantes entre les deux sous-périodes précitées exigent aussi des taux de troncature différent pour chacune des périodes.

L’identification des taux de troncature optimaux nécessite maintenant l’introduction de considérations supplémentaires sur les pondérations des groupes de biens.

Les pondérations des groupes de biens jouent un rôle très important pour la détermination du taux de troncature optimal de la mesure de moyenne réduite.

Supposons que la distribution soit inclinée vers la droite de sorte que certaines valeurs extrêmes de la distribution se regroupent sur la queue droite. La présence de ces valeurs fait s’écarter la moyenne de la médiane de la distribution et la moyenne devient dans ce cas supérieure à la médiane. Le biais entre la moyenne et la médiane crée un doute sur le rôle représentatif de la moyenne pour la tendance centrale de la distribution. Il est donc nécessaire d’exclure ces valeurs extrêmes. Supposons par exemple que la distribution contient 10 composantes ayant chacune des pondérations égales\(^{39}\). Dans ce cas, si on exclue 10% de la queue droite, on peut éliminer la composante dont le prix varie le plus fortement dans la distribution. Pareillement, l’exclusion de

\(^{39}\) Ceci correspond au fait que les pondérations sont les mêmes.
20% de cette queue, peut éliminer complètement l’influence des deux composantes les plus volatiles. L’exclusion peut ainsi être prolongée jusqu’à obtenir une nouvelle distribution qui soit symétrique. La moyenne de cette nouvelle distribution représente alors mieux la tendance fondamentale de la distribution.

Dans des cas où les pondérations attribuées à chacune des composantes sont différentes, la détermination du taux de troncature devient plus complexe. C’est le cas pour le Vietnam. La distribution se compose de 13 composantes avec des pondérations différentes. Pendant certains périodes, la distribution est inclinée vers la droite du fait que les variations du prix du groupe HEALTH sont beaucoup plus grandes que les variations des autres groupes. Le groupe HEALTH est alors présent dans la queue droite. Pour avoir une nouvelle distribution moins asymétrique, il est ainsi obligatoire d’exclure les variations de prix du groupe HEALTH de la distribution pendant ces périodes. Le taux de troncature minimal doit alors être égal à la pondération attribué au groupe HEALTH. En effet, si on applique un taux de troncature plus petit que la pondération, la mesure de la moyenne réduite n’élimine que partiellement l’influence des variations de prix du groupe HEALTH du calcul de l’inflation. Au contraire, si ce taux de troncature est plus grand que la pondération, la mesure de moyenne réduite élimine non seulement l’influence du groupe HEALTH mais également l’influence des autres composantes de la distribution. L’exemple qui vient d’être donné indique donc que la pondération joue un rôle très important pour la détermination du taux de troncature optimal. De même, il est également important de mettre l’accent sur la fréquence d’apparition de chacune des composantes dans les deux queues de la distribution. Ce sont des informations utiles pour la détermination du taux de troncature optimal pour les mesures de moyenne tronquée. Elles sont également utiles pour le choix des composantes à exclure pour les mesures d’exclusion.
En outre, afin d’identifier le taux de troncature optimal, Bryan et Cecchetti appliquent une technique de simulation de Monte Carlo qui est très efficace. Cette technique identifie le taux de troncature optimal comme étant le taux de la mesure de moyenne tronquée. On obtient alors la série d’inflation sous-jacente ayant une plus grande capacité de prédiction, avec une erreur de prévision (RMSE) plus faible. Normalement, ce taux de troncature doit être compris entre 30 et 35% pour chaque queue de la distribution. Cependant, Bryan et Cecchetti soulignent que même avec un faible taux de troncature (5%), il est déjà possible de modifier la forme de la distribution et d’améliorer efficacement la capacité prédictive de l’inflation sous-jacente.

Dans cette étude, en travaillant sur une base de données limitée à 13 composantes et à une durée de 5 ans, il n’est pas nécessaire d’appliquer cette technique.

Troisièmement, les pondérations font changer les propriétés de la distribution des variations de prix. Dans le graphique ci-dessus (Figure 16) sont présentés les histogrammes de la distribution à trois moments différents. On peut voir un changement important entre les distributions normales (les trois histogrammes de gauche, notés INDIS) et les distributions pondérées (les trois histogrammes de droite, notés WDIS). Typiquement, au troisième moment, l’asymétrie de la distribution se déplace de gauche à droite lorsque la distribution est recalculée en intégrant les pondérations. Cette remarque nous suggère de ne pas utiliser la médiane comme indicateur d’inflation sous-jacente. Au contraire, la mesure des pondérations réduites semble être davantage justifiée dans ce cas.
Figure 16: HISTOGRAMES DES DISTRIBUTIONS
6.3. **Estimation de l’inflation sous-jacente par les mesures d’exclusion**

L’estimation de l’inflation sous-jacente par les mesures d’exclusion est maintenant effectuée sur la base des remarques préliminaires suivantes.

Suite à nos observations, nous émettons les remarques suivantes :

Premièrement, le groupe « POST » est la composante de prix qui varie inversement à la tendance commune. Tandis que les autres groupes suivent la tendance d’augmentation générale des prix, le prix des biens dans le groupe « POST » diminue. Seul ce groupe « POST » poursuit cette tendance à la baisse.

Deuxièmement, à partir de 2012 :05, les prix du groupe « HEALTH » s’accroissent soudainement et continuellement pendant plusieurs mois pour atteindre un niveau très élevé par rapport à leur valeur passée et par rapport aux prix des autres groupes. Nous identifions ces accroissements comme la conséquence de chocs temporaires, car, les prix du groupe « HEALTH » étaient stables pendant la période précédente.

Troisièmement, pour l’ensemble de la période d’observation, « FOODSTUFF » est la composante dont le prix varie le plus fortement, avec une amplitude qui change continuellement. De plus, sa pondération est très importante et près de trois fois plus grande que la moyenne des pondérations des autres composantes. C’est la raison pour laquelle les variations des biens du groupe « FOODSTUFF » sont toujours amplifiées et génèrent des écarts entre l’inflation observée et sa tendance générale. Les prix de la composante « TRANS » sont également très variables. Les caractéristiques des différentes composantes de prix sont présentées dans le Tableau 6 suivant.
Suite aux remarques précédentes, les groupes POST, FOOTSTUFF, HEALTH et TRANS apparaissent comme des candidats à l’exclusion lors du calcul de l’inflation sous-jacente. De là, un jeu d’indices d’inflation sous-jacente est calculée et présenté graphiquement dans la figure 16 au-dessous.

Figure 17: INDICES D’INFLATION SOUS-JACENTE ESTIMÉS PAR LES MESURES D’EXCLUSION
Note:

1. **INF** est l’indice d’inflation observée.
2. **EXPO** est l’indice d’inflation sous-jacente mesurée par la méthode d’exclusion et en excluant les prix du groupe **POST**.
3. **EXF** est l’indice d’inflation sous-jacente mesurée par la méthode d’exclusion et en excluant les prix du groupe **FOOD**.
4. **EXH** est l’indice d’inflation sous-jacente mesurée par la méthode d’exclusion et en excluant les prix du groupe **HEALTH**.
5. **EXT** est l’indice d’inflation sous-jacente mesurée par la méthode d’exclusion et en excluant les prix du groupe **TRANS**.
6. **EXHP** est l’indice d’inflation sous-jacente mesurée par la méthode d’exclusion et en excluant les prix du groupe **HEALTH** et les prix du groupe **POST**.
7. **EXPF** est l’indice d’inflation sous-jacente mesurée par la méthode d’exclusion et en excluant les prix du groupe **POST** et les prix du groupe **FOOD**.
8. **EXPFT** est l’indice d’inflation sous-jacente mesurée par la méthode d’exclusion et en excluant les prix du groupe **POST**, les prix du groupe **FOOD** et les prix du groupe **TRANS**.
9. **EXHPFS** est l’indice d’inflation sous-jacente mesurée par la méthode d’exclusion et en excluant les prix du groupe **HEALTH**, les prix du groupe **POST** et les prix du groupe **FOODSTUFF**.
10. **EXPFTH** est l’indice d’inflation sous-jacente mesurée par la méthode d’exclusion et en excluant les prix du groupe **POST**, les prix du groupe **FOOD**, les prix du groupe **TRANS** et les prix du groupe **HEALTH**.

Notons que le terme « ExPO » est interprété comme suit : Ex est l’abréviation du mot « exclusion » ; PO est l’abréviation du mot « POST » - le
groupe des biens et service de poste. ExPO est la notation de l’indice d’inflation sous-jacente mesurée par la méthode d’exclusion dont exclu le prix du groupe « POST ». Cela est similaire pour les autres notations dans cette sous-section.

Comme la figure 17 le montre, les inflations sous-jacentes évaluées par cette approche sont relativement homogènes.

L’indice de l’inflation sous-jacente « ExPO » apparaît très importante et est supérieur à l’inflation observée (INF) alors qu’ExF est très faible. Ceci est explicable par le fait que les variations de prix « POST » étant négatives, celles-ci ne suivent pas une tendance à la hausse comme les autres composantes mais diminuent progressivement sur la longue période. Lorsque ces variations négatives sont éliminées la moyenne de l’inflation augmente naturellement. Au contraire, la composante « FOODSTUFF » varie fortement et suit principalement une tendance à la hausse. De plus, elle possède la pondération la plus forte des 13 composantes. Par conséquence, suite à l’exclusion de cette composante « FOODSTUFF », on observe une chute importante de l’inflation. Pour toutes les séries d’inflation sous-jacente dans lesquelles la composante « FOODSTUFF » (24.35) est exclue, leur moyenne et leur écart type sont nettement plus faibles que ceux de la série d’inflation observée (INF). Dans le cas de la série « ExPF », du fait de la compensation des variations positives et négatives des groupes « FOODSTUFF » et « POST », la moyenne est assez proche de la moyenne de l’inflation observée (INF).

| Tableau 7: MOYENNES ET ÉCARTS-TYPE DES INDICES D’INFLATION SOUS-JACENTE ESTIMÉS PAR L’EXCLUSION |
|---|---|---|---|---|---|---|---|---|---|
| INF | EXT | EXHP | EXHPFS | EXH | EXPO | INF | INF | INF | INF |
| Moyenne | 10.36 | 10.52 | 10.43 | 9.75 | 10.02 | 10.73 | 9.69 | 10.20 | 10.45 | 9.96 |
| Écart-type | 5.64 | 5.31 | 6.29 | 4.65 | 6.11 | 5.49 | 3.78 | 3.88 | 3.60 | 4.47 |
L’application d’un taux d’exclusion important permet certes de réduire l’instabilité de l’inflation mesurée mais entraîne un biais important entre l’inflation sous-jacente et l’inflation observée (INF).

Du fait des résultats précédents et de la forte variabilité des prix des 13 composantes de notre base de données, nous pensons qu’il n’est pas opportun d’utiliser une méthode de calcul de l’inflation sous-jacente dans laquelle certaines composantes sont exclues définitivement. Il semble davantage adapté de procéder à une mise à jour de la liste des composantes exclues périodiquement (par exemple tous les deux ans). Avec une telle approche flexible, les indices d’inflation sous-jacente devraient mieux capturer la tendance fondamentale des variations de prix et sans exclure un grand nombre de composantes.

Nous tenons à souligner qu’à nouveau l’inflation vietnamienne est particulièrement pendant la période allant de 2009 :01 à 2013 :09.

En effet, premièrement, l’écart-type de la série est très grand et correspond à la moitié de la moyenne de l’inflation.

Deuxièmement, plus d’un quart des observations se situent hors de l’amplitude d'oscillation 5-15%40.

Troisièmement, l’inflation s’accroît tendanciellement, fortement et continuellement pendant 2 ans à partir du milieu de l’année 2009 jusqu’au milieu de l’année 2011, puis se retourne pour adopter une tendance à la baisse. Ainsi, au cours de notre période d’observation de 57 mois, l’inflation varie de manière opposée à sa tendance passée pendant 15 mois (du milieu de l’année

40 Cette amplitude d’oscillation est mesurée par l’intervalle [moyenne - écart type de la distribution ; moyenne + écart type].
2012 jusqu’au mois de septembre 2013). De plus, l’inflation de la composante HEALTH augmente soudainement et passe de son niveau normal 4% par an à 50%, voire 60% en 2013 bien qu’il n’existe aucune pression particulière de l’offre ou de la demande sur ce marché. Il est donc clair que notre horizon de recherche n’est pas une période particulièrement appropriée pour vérifier la conformité des mesures statistiques de l’inflation sous-jacente. Ce problème est une limitation de cette analyse.

6.4. Estimation de l’inflation sous-jacente par la moyenne tronquée

La vérification de la fréquence d’apparition de chaque composante dans les queues de la distribution pondérée montre que pendant 57 mois d’observations, il y a 46 mois parmi lesquels la composante POST apparaît dans la queue gauche de la distribution ; la composante FOODSTUFF est présente 57 fois durant les 57 mois dans la queue de droite. Même dans la distribution normale, la composante POST reste toujours dans la queue de gauche et la composante FOODSTUFF dans la queue de droite. Dans cette distribution initiale, les deux composantes HEALTH et TRANS sont présentes fréquemment dans la queue droite. De ce fait, nous choisissons un taux de troncature égal à 3% pour la queue de gauche. Ce taux est un peu plus élevé que la pondération du groupe POST (2,7%), de sorte que l’exclusion de 3% des observations dans la queue de gauche permet d’éliminer complètement l’influence des variations de prix du groupe POST sur la distribution. De manière similaire, un taux de troncature de 15% est choisi pour la queue de droite. Ce taux est assez raisonnable car il aide à éliminer ou à réduire l’influence des composantes présentes dans la queue droite. Et ce taux peut être utilisé systématiquement pour les deux sous-périodes de l’échantillon, à savoir avant et après 2012 :05. De plus, nous calculons également des séries d’inflation sous-jacente avec des taux de troncature différents. Cela nous permet de faire une comparaison entre ces séries et d’évaluer l’influence des
choix. Ces séries sont notées avec trois lettres « WTM » et des chiffres qui représentent respectivement les taux de troncature appliqués pour la queue gauche et la queue droite. Par exemple, WTM36 désigne l’indice d’inflation sous-jacente mesurée par la moyenne tronquée dont le taux de troncature est de 3% dans la queue de gauche et de 6% dans la queue de droite de la distribution. Les résultats sont présentés dans le graphique 18 et le tableau 8 ci-dessous.

Figure 18: INDICES D’INFLATION SOUS-JACENTE ESTIMÉS PAR LES MOYENNES TRONQUÉES

![Graphique des indices d'inflation sous-jacentes estimés par les moyennes tronquées](image)

Note:

1. **WTM36** est l’indice d’inflation sous-jacente mesurée par la moyenne tronquée dont le taux de troncature est de 3% dans la queue de gauche et de 6% dans la queue de droite de la distribution.
2. **WTM315** est l’indice d’inflation sous-jacente mesurée par la moyenne tronquée dont le taux de troncature est de 3% dans la queue de gauche et de 15% dans la queue de droite de la distribution.
3. **WTM325** est l’indice d’inflation sous-jacente mesurée par la moyenne tronquée dont le taux de troncature est de 3% dans la queue de gauche et de 15% dans la queue de droite de la distribution.
4. **WTM1010** est l'indice d'inflation sous-jacente mesurée par la moyenne tronquée dont le taux de troncature est de 10% dans la queue de gauche et de 10% dans la queue de droite de la distribution.

5. **WTM1515** est l'indice d'inflation sous-jacente mesurée par la moyenne tronquée dont le taux de troncature est de 15% dans la queue de gauche et de 15% dans la queue de droite de la distribution.

6. **WTM1015** est l'indice d'inflation sous-jacente mesurée par la moyenne tronquée dont le taux de troncature est de 10% dans la queue de gauche et de 15% dans la queue de droite de la distribution.

Tableau 8: PARAMÈTRES STATISTIQUES DES INDICES D’INFLATION ESTIMÉES PAR LES MOYENNES TRONQUÉES

<table>
<thead>
<tr>
<th></th>
<th>WTM10</th>
<th>WTM15</th>
<th>WTM20</th>
<th>WTM30</th>
<th>WTM1010</th>
<th>WTM1515</th>
<th>WTM1015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Écart-type</td>
<td>5.745</td>
<td>5.524</td>
<td>5.095</td>
<td>5.840</td>
<td>5.834</td>
<td>5.676</td>
<td></td>
</tr>
</tbody>
</table>

6.5. **Estimation de l’inflation sous-jacente par la médiane et la médiane pondérée**

La plupart des sous-indices de l’IPC étant très volatiles avec des amplitudes de variation très différentes dans chaque mois. Le fait de mesurer la tendance centrale de l’inflation avec la médiane qui équivaut à la valeur centrale de la distribution établie par l’ordre croissant des valeurs) n’est pas justifiable. La médiane, dans le cas du Vietnam, est exactement la septième valeur parmi les 13 valeurs de cette distribution. De façon similaire, la médiane pondérée est aussi la valeur au centre de la distribution mais ne prend pas exactement la septième valeur de la distribution ordonnée. Elle prend la valeur qui correspond au moment où la distribution pondérée est divisée en deux parties et donc chaque partie occupe 50% de la pondération. Elle est donc

Figure 19: INDICE D’INFLATION SOUS-JACENTE ESTIMÉ PAR LA MESURE DE MÉDIANE PONDERÉE

Note:

1. **INF** est l’indice d’inflation observée.
2. **WMEDIAN** est l’indice d’inflation sous-jacente mesurée par la médiane pondérée.

6.6. Estimation de l’inflation sous-jacente par la méthode des pondérations réduites

Comme nous l’avons déjà expliqué, lors de l’application de ces mesures, l’échantillon d’observation doit être divisé en deux sous périodes : avant et après 2012 :05. De là, deux ensembles de pondération différents et deux séries
d’inflation sous-jacente sont respectivement calculés pour chaque sous période (voir le tableau 9 ci-dessous). Ces deux séries d’inflation sous-jacente sont ensuite concaténées pour constituer une série unique. La série mesurée est présentée dans la figure 20 ci-dessous. Comme dans le cas de la médiane, il existe un écart important entre l’inflation observée et l’inflation sous-jacente mesurée à l'aide de la méthode des pondérations réduites.

Figure 20: INDICE D’INFLATION SOUS-JACENTE ESTIMÉ PAR LA MESURE DE PONDÉRATION RÉDUITE

Note:

1. **INF** est l’indice d’inflation observée.
2. **DOWN** est l’indice d’inflation sous-jacente mesurée par la méthode de pondération réduite.
Tableau 9: NOUVELLES PONDÉRATIONS POUR DEUX SOUS-PÉRIODES

<table>
<thead>
<tr>
<th>Unité</th>
<th>De 2009:01 à 2012:05</th>
<th>Nouvelle pondération</th>
<th>Nouvelle pondération</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pondération initiale</td>
<td>Nouvelle pondération</td>
<td>Nouvelle pondération</td>
</tr>
<tr>
<td>POST</td>
<td>2.7</td>
<td>3.5</td>
<td>24.2</td>
</tr>
<tr>
<td>TRANS</td>
<td>8.9</td>
<td>3.8</td>
<td>4.8</td>
</tr>
<tr>
<td>HOUSING</td>
<td>10.0</td>
<td>5.6</td>
<td>5.6</td>
</tr>
<tr>
<td>EDU</td>
<td>5.7</td>
<td>2.9</td>
<td>4.2</td>
</tr>
<tr>
<td>HEALTH</td>
<td>5.6</td>
<td>12.7</td>
<td>0.3</td>
</tr>
<tr>
<td>CULTURE</td>
<td>3.8</td>
<td>6.3</td>
<td>8.8</td>
</tr>
<tr>
<td>OTHERS</td>
<td>3.3</td>
<td>13.7</td>
<td>2.0</td>
</tr>
<tr>
<td>GARMENT</td>
<td>7.3</td>
<td>10.8</td>
<td>13.6</td>
</tr>
<tr>
<td>BEV</td>
<td>4.0</td>
<td>8.5</td>
<td>5.4</td>
</tr>
<tr>
<td>HOUSEHOLD</td>
<td>8.7</td>
<td>15.5</td>
<td>10.8</td>
</tr>
<tr>
<td>FOODSTUFF</td>
<td>24.35</td>
<td>9.2</td>
<td>13.4</td>
</tr>
<tr>
<td>FOODSERVICES</td>
<td>7.4</td>
<td>4.8</td>
<td>3.4</td>
</tr>
<tr>
<td>FOOD</td>
<td>8.18</td>
<td>2.7</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

6.7. Estimation de l’inflation sous-jacente par le modèle à facteur dynamique

Nous appliquons ici le modèle à facteur dynamique aux neuf indices d’inflation sectorielle. Notre base de données initiale se compose de treize indices des prix sectoriels mais avec une période d’observation trop courte (2009 :01 à 2013 :05) pour pouvoir appliquer efficacement cette méthode. Nous avons donc réussi à prolonger l’échantillon sur la période 2006 :01 - 2013 :05 pour neuf indices de prix sectoriels. Le modèle à facteur dynamique est donc appliqué à ces neuf indices d’inflation sectoriels pour la période 2006 :01 à 2013 :05. Les neuf secteurs retenus sont :
Chapitre 2: Les approches statistiques

Le modèle décompose ces neuf variables dans une composante commune et neuf composantes spécifiques. Chacune de ces composantes est stochastique et elles sont toutes supposées être mutuellement non corrélées entre elles. La composante commune suit un processus AR(2) tandis que chacune des composantes spécifiques est une marche aléatoire\(^ {41} \).

Le modèle peut s’écrire ainsi :

\[
\begin{pmatrix}
\pi_{1,t} \\
\pi_{2,t} \\
: \\
\pi_{9,t}
\end{pmatrix} =
\begin{pmatrix}
\gamma_1 \\
\gamma_2 \\
: \\
\gamma_9
\end{pmatrix} \pi_t^* +
\begin{pmatrix}
\pi_{1,t}^s \\
\pi_{2,t}^s \\
: \\
\pi_{9,t}^s
\end{pmatrix}
\] (2.35)

\[
\pi_t^* = \varphi_1 \pi_{t-1}^* + \varphi_2 \pi_{t-2}^* + \delta + \eta_t
\] (2.36)

\[
\begin{pmatrix}
\pi_{1,t}^s \\
\pi_{2,t}^s \\
: \\
\pi_{9,t}^s
\end{pmatrix} =
\begin{pmatrix}
\phi_{1,1} \pi_{1,t-1}^s \\
\phi_{2,1} \pi_{2,t-1}^s \\
: \\
\phi_{9,1} \pi_{9,t-1}^s
\end{pmatrix} +
\begin{pmatrix}
\epsilon_{1,t} \\
\epsilon_{2,t} \\
: \\
\epsilon_{9,t}
\end{pmatrix}
\] (2.37)

\[^{41}\text{Un test du rapport des vraisemblances ne permet pas d’accepter un degré plus élevé de terme autorégressif pour les composantes spécifiques ainsi que pour la composante commune.} \]
L’estimation du modèle est effectuée en deux étapes: dans un premier temps, les équations du système sont réécrites sous la forme d’un modèle état mesure puis ce modèle est estimé par la technique du filtre de Kalman.

La forme d’état mesure du modèle est la suivante:

L’équation d’observation:

\[
\begin{bmatrix}
\pi_{1,t} \\
\pi_{2,t} \\
\pi_{3,t} \\
\pi_{4,t} \\
\pi_{5,t} \\
\pi_{6,t} \\
\pi_{7,t} \\
\pi_{8,t} \\
\pi_{9,t}
\end{bmatrix}
= \begin{bmatrix}
y_1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
y_2 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
y_3 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
y_4 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
y_5 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
y_6 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
y_7 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
y_8 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
y_9 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
\pi_t^* \\
\pi_{t-1} \\
\pi_{6,t} \\
\pi_{5,t} \\
\pi_{3,t} \\
\pi_{2,t} \\
\pi_{1,t} \\
\pi_{8,t} \\
\pi_{9,t}
\end{bmatrix}
\] (2.38)
Chapitre 2: Les approches statistiques

L'équation d'état :

\[
\begin{bmatrix}
\pi^*_t \\
\pi^*_{t-1} \\
\pi^*_1, t \\
\pi^*_2, t \\
\pi^*_3, t \\
\pi^*_4, t \\
\pi^*_5, t \\
\pi^*_6, t \\
\pi^*_7, t \\
\pi^*_8, t \\
\pi^*_9, t \\
\end{bmatrix} = \begin{bmatrix}
\varphi_1 & \varphi_2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \varphi_1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \varphi_2 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \varphi_3 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \varphi_4 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \varphi_5 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \varphi_6 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \varphi_7 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \varphi_8 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \varphi_9 \\
\end{bmatrix} \begin{bmatrix}
\pi^*_{t-1} \\
\pi^*_{t-2} \\
\pi^*_{1, t-1} \\
\pi^*_{2, t-1} \\
\pi^*_{3, t-1} \\
\pi^*_{4, t-1} \\
\pi^*_{5, t-1} \\
\pi^*_{6, t-1} \\
\pi^*_{7, t-1} \\
\pi^*_{8, t-1} \\
\pi^*_{9, t-1} \\
\end{bmatrix} + \begin{bmatrix}
\delta \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
\end{bmatrix} + R_t \cdot Q_t
\] (2.39)

Avec :

\[
R_t \cdot Q_t = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix} \begin{bmatrix}
\sigma^2_{\eta} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \sigma^2_{\varepsilon_1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \sigma^2_{\varepsilon_2} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \sigma^2_{\varepsilon_3} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \sigma^2_{\varepsilon_4} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \sigma^2_{\varepsilon_5} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \sigma^2_{\varepsilon_6} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \sigma^2_{\varepsilon_7} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \sigma^2_{\varepsilon_8} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix} (2.40)
Comme Bryan et Cecchetti(1993) nous fixons tous les paramètres \(\gamma_i \) à la valeur \(\gamma_i = 1 \) pour assurer une certaine homogénéité entre la tendance commune et chaque indice d’inflation sectorielle. En général, les estimations donnent des résultats assez bons. Les paramètres estimés sont significatifs. Le modèle converge rapidement.

Après estimation, la dynamique de la tendance commune est: (les détails des estimations réalisées sont présentés dans l’annexe 2).

\[
\pi_t^* = 11,36 + 1,73\pi_{t-1}^* - 0,76\pi_{t-2}^* \text{ et } \sigma^2_{\eta} = 0,08 \quad (2.41)
\]

Les dynamiques des composantes spécifiques sont :

\[
\pi_{1,t}^* = 0,97 * \pi_{1,t-1}^* \text{ et } \sigma^2_{\xi_1} = 5,09 \quad (2.42)
\]
\[
\pi_{2,t}^* = 0,98 * \pi_{2,t-1}^* \text{ et } \sigma^2_{\xi_2} = 0,18 \quad (2.43)
\]
\[
\pi_{3,t}^* = 0,96 * \pi_{3,t-1}^* \text{ et } \sigma^2_{\xi_3} = 0,06 \quad (2.44)
\]
\[
\pi_{4,t}^* = 0,96 * \pi_{4,t-1}^* \text{ et } \sigma^2_{\xi_4} = 4,11 \quad (2.45)
\]
\[
\pi_{5,t}^* = 0,95 * \pi_{5,t-1}^* \text{ et } \sigma^2_{\xi_5} = 0,05 \quad (2.46)
\]
\[
\pi_{6,t}^* = 0,96 * \pi_{6,t-1}^* \text{ et } \sigma^2_{\xi_6} = 13,04 \quad (2.47)
\]
\[
\pi_{7,t}^* = 0,98 * \pi_{7,t-1}^* \text{ et } \sigma^2_{\xi_7} = 1,69 \quad (2.48)
\]
\[
\pi_{8,t}^* = 0,98 * \pi_{8,t-1}^* \text{ et } \sigma^2_{\xi_8} = 0,34 \quad (2.49)
\]
\[
\pi_{9,t}^* = 0,90 * \pi_{9,t-1}^* \text{ et } \sigma^2_{\xi_9} = 0,08 \quad (2.50)
\]

L’inflation sous-jacente est ensuite calculée selon :

\[
\pi_t^* = \sum_{i=1}^{9} \bar{w}_i \pi_{it} \quad (2.51)
\]
Avec

\[
\begin{align*}
\bar{w}_1 &= 0.41\% \\
\bar{w}_2 &= 11.39\% \\
\bar{w}_3 &= 35.10\% \\
\bar{w}_4 &= 0.51\% \\
\bar{w}_5 &= 40.50\% \\
\bar{w}_6 &= 0.16\% \\
\bar{w}_7 &= 1.23\% \\
\bar{w}_8 &= 6.06\% \\
\bar{w}_9 &= 5.58\%
\end{align*}
\]

La figure 21 suivant retrace l’évolution de l’inflation sous-jacente fournie par le modèle à facteur dynamique.

Figure 21: INDICE D’INFLATION SOUS-JACENTE ESTIMÉ PAR LE MODÈLE À FACTEUR DYNAMIQUE

![Graphique](image)

Note:

1. **INF** est l’indice d’inflation observée.
2. **COREDFI** est l’indice d’inflation sous-jacente mesurée par le modèle à facteur dynamique.

Une autre estimation dans laquelle les coefficients \(\gamma_i\) sont laissés libres nous donne des informations très intéressantes (les détails des estimations réalisées avec des coefficients \(\gamma_i\) libres présentés dans l’annexe 3). À la suite d’un choc qui pousse le niveau de prix à la hausse, chaque secteur exhibe des
réactions différentes. Ce fait est très clair dans notre cas. L’impulsion du groupe des produits alimentaires (FOODTOTAL) est la plus forte, avec un multiplicateur de l’ordre de 8.6 tandis que le niveau moyen des autres groupes n’est que de 2.0. De plus, c’est également le groupe dont le prix est le plus volatile de sorte que ce groupe occupe la part la plus importante dans le panier du consommateur vietnamien (près de 40% de celui-ci). Il est donc un facteur important d’aggravation du biais de l’inflation observée par rapport à sa tendance générale. Dans la structure de l’inflation sous-jacente, l’impact du groupe DFI est beaucoup plus limité. Les prix des produits de santé et de bien-être (le groupe HEALTH) sont pour leur part les moins sensibles. Ils répondent doucement au choc avec un multiplicateur inférieur à 1 voire parfois de façon négative, alors que la tendance est orientée à la hausse. Les prix de ces produits sont contrôlés par le Gouvernement du Vietnam. Ceci explique pourquoi les évolutions de ces prix peuvent être relativement indépendantes de la tendance commune dans certaines périodes. Cet effet inattendu est aussi éliminé dans la structure de l’inflation sous-jacente DFI, avec un poids qui n’est que de 0.16%.

L’inflation sous-jacente DFI qui vient d’être estimée, est assez proche de l’inflation observée mais moins volatile. Les prix de deux groupes : GARMENT et HOUSEHOLD (les deux qui se trouvent le plus souvent au centre de la distribution) contribuent strictement à l’évolution du facteur dynamique. Ces résultats sont donc compatibles avec les résultats obtenus avec les autres méthodes statistiques présentées précédemment.

7. **Conclusion**

Le résultat principal de ce chapitre est l’estimation d’un panel d’indices d’inflation sous-jacente mesurés par plusieurs mesures statistiques pour le Vietnam. Au premier regard, la plupart de ces indices sont assez homogènes. Ils poursuivent la même tendance que l’inflation sous-jacente mais sont
beaucoup moins volatils. Ce sont des signes très positifs. Pour déterminer quel est l’indice le plus pertinent parmi ces indices mesurés, il est nécessaire encore de pratiquer des tests plus spécifiques. Ces tests seront abordés dans le chapitre 4 où tous les indices d’inflation sous-jacente mesurés dans cette thèse seront regroupés pour une comparaison de leurs caractéristiques et pour le choix de l’indice le plus adapté au cas du Vietnam.

Nous avons également, dans ce chapitre, mis en évidence des nouveaux jeux de pondérations pour le calcul de l’inflation sous-jacente du Vietnam. Ces nouveaux jeux de pondérations sont vraiment différents les uns des autres et il est hors de propos de les comparer directement. Néanmoins chacun fournit des informations complémentaires utiles. C’est particulièrement dans le cas avec le jeu des pondérations obtenu à partir du modèle à facteur dynamique. Les variations de prix des groupes : HOUSEHOLD, GARMENT et BEV – les trois groupes qui sont distribués avec les pondérations les plus grandes dans ce nouveau jeu – sont fortement guidé par les chocs communs du système. Par contre, pour les autres, par exemple FOODTOTAL et HOUSING, les variations de prix sont fortement influencées par les chocs sectoriels de sorte que ces groupes expliquent une part importante du biais entre l’inflation et son niveau tendanciel. La difficulté semble donc être ici liée au fait que dans le jeu des pondérations officielles, les trois groupes HOUSEHOLD, GARMENT et BEV possèdent des pondérations très modestes tandis que les groupes FOODTOTAL et HOUSING occupent des parts importantes. Les influences

42 Pour les mesures d’exclusion et à part pour les indices exclus, les indices qui sont conservés pour mesurer l’inflation sous-jacente gardent toujours le même ordre d’importance que celui qu’ils possédaient dans le calcul initial de l’indice des prix à la consommation. De même, les pondérations retenues de la mesure de moyenne tronquée changent mois par mois mais leur ordre d’importance ne changent pas beaucoup. La plus grande variation des pondérations est obtenue avec le modèle à facteur dynamique.
Chapitre 2: Les approches statistiques

Les chocs sectoriels sont donc très amplifiées dans l’inflation observée. Ceci a tendance à biaiser l’inflation observée et génère la création de chocs communs sur le système. Ce résultat est compatible avec les analyses effectuées avec les autres mesures statistiques reportées au-dessus, et aide à renforcer la fiabilité de nos résultats.

Lors de cette étude certains inconvénients ont été constatés. Tout d’abord, la base de données est encore très limitée et est peu détaillée. D’autre part, la période d’observation n’est pas suffisamment longue et elle ne se compose que de 57 mois. En outre, cette période d’observation est faiblement représentative car durant celle-ci l’inflation varie très fortement et avec des ruptures importantes dans sa tendance.
Chapitre 2: Les approches statistiques

Annexe 1: EXEMPLE DU CALCUL DES MESURES STATISTIQUES

Tableau 10 : JEU DE DONNÉES

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Foodstuff</td>
<td>24.35</td>
<td>105.43</td>
</tr>
<tr>
<td>2</td>
<td>Housing</td>
<td>10.00</td>
<td>113.57</td>
</tr>
<tr>
<td>3</td>
<td>Trans</td>
<td>8.90</td>
<td>117.21</td>
</tr>
<tr>
<td>4</td>
<td>Household</td>
<td>8.65</td>
<td>104.91</td>
</tr>
<tr>
<td>5</td>
<td>Food</td>
<td>8.18</td>
<td>112.33</td>
</tr>
<tr>
<td>6</td>
<td>Food services</td>
<td>7.40</td>
<td>109.81</td>
</tr>
<tr>
<td>7</td>
<td>Garment</td>
<td>7.28</td>
<td>105.82</td>
</tr>
<tr>
<td>8</td>
<td>Edu</td>
<td>5.72</td>
<td>106.26</td>
</tr>
<tr>
<td>9</td>
<td>Health</td>
<td>5.60</td>
<td>103.05</td>
</tr>
<tr>
<td>10</td>
<td>BEV</td>
<td>4.03</td>
<td>106.75</td>
</tr>
<tr>
<td>11</td>
<td>Culture</td>
<td>3.83</td>
<td>100.77</td>
</tr>
<tr>
<td>12</td>
<td>Post</td>
<td>2.72</td>
<td>96.26</td>
</tr>
<tr>
<td>13</td>
<td>Others</td>
<td>3.34</td>
<td>111.59</td>
</tr>
</tbody>
</table>

- Mesure d’exclusion définitive de certaines composantes de l’inflation d’IPC

Dans cet exemple, nous présentons le calcul de l’indice EXT. Cet indice est l’indice d’inflation sous-jacente mesurée par la méthode d’exclusion et en excluant les prix du groupe TRANS. Comme INF, EXT est également la moyenne pondérée des 13 sous-indices mais la composante TRANS a été éliminée par attribution d’une pondération égale à zéro.
Le mode de calcul est le suivant :

\[
IPC^{EXT} = \frac{[(105.43 \times 24.35) + (113.57 \times 10) + (117.21 \times 0) + \ldots + (111.59 \times 3.34)]}{100 - 8.9} = 107.00
\]

(2.52)

- La moyenne tronquée

La moyenne tronquée, en termes statistiques, revient à exclure les valeurs extrêmes (soit trop grandes soit trop petites) des données, puis à calculer la moyenne pondérée des valeurs restantes.

Dans cet exemple, nous présentons le calcul de l’indice WTM36. C’est l’indice d’inflation sous-jacente mesurée par la moyenne tronquée dont le taux de troncature est de 3% dans la queue de gauche et de 6% dans la queue de droite de la distribution.

Pour effectuer ce calcul, d’abord, il faut d’abord ordonner l’échantillon (voir la colonne C du Tableau 11). On retranche ensuite au total 3% des pondérations des valeurs les plus petites de l’échantillon et 6% des pondérations des valeurs les plus grandes. Il en résulte un nouveau jeu de pondération (voir la colonne E du Tableau 11).

Dans ce nouveau jeu de pondération, la pondération du groupe «POST» qui possède la valeur la plus petite (96.26) est tronquée à 0% (car elle est de 2.72% donc inférieure de 3%) et la pondération du groupe «EDU» qui possède la seconde plus petite valeur (100.77) est tronquée à 3.55% ((3.83% +2.72%)-3% = 3.55%). De façon similaire, la pondération du groupe «TRANS» est tronquée à 2.90% (8.90% - 6% = 2.9%). De cette façon, on peut retrancher 3% dans la queue de gauche et 6% dans la queue de droite de la distribution.
L’indice d’inflation sous-jacente WTM36 est la nouvelle moyenne pondérée de l’échantillon.

\[
IPC_{WTM36}^{'} = \frac{[(96.26\times0)+(100.77\times3.55)+(103.05\times5.6)+\cdots+(117.21\times2.90)]}{100-3-6} = 107.67
\]

\[(2.53)\]

Tableau 11 : EXEMPLE DU CALCUL DE LA MOYENNE TRONQUÉE

<table>
<thead>
<tr>
<th>A</th>
<th>B Groupes de biens et services</th>
<th>C Pondération initiale (%)</th>
<th>D Sous-indices d’IPC</th>
<th>E Ponderation réduite (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Post</td>
<td>2.72</td>
<td>96.26</td>
<td>0.00</td>
</tr>
<tr>
<td>2</td>
<td>Culture</td>
<td>3.83</td>
<td>100.77</td>
<td>3.55</td>
</tr>
<tr>
<td>3</td>
<td>Health</td>
<td>5.60</td>
<td>103.05</td>
<td>5.60</td>
</tr>
<tr>
<td>4</td>
<td>Household</td>
<td>8.65</td>
<td>104.91</td>
<td>8.65</td>
</tr>
<tr>
<td>5</td>
<td>Foodstuff</td>
<td>24.35</td>
<td>105.43</td>
<td>24.35</td>
</tr>
<tr>
<td>6</td>
<td>Garment</td>
<td>7.28</td>
<td>105.82</td>
<td>7.28</td>
</tr>
<tr>
<td>7</td>
<td>Edu</td>
<td>5.72</td>
<td>106.26</td>
<td>5.72</td>
</tr>
<tr>
<td>8</td>
<td>BEV</td>
<td>4.03</td>
<td>106.75</td>
<td>4.03</td>
</tr>
<tr>
<td>9</td>
<td>Food services</td>
<td>7.40</td>
<td>109.81</td>
<td>7.40</td>
</tr>
<tr>
<td>10</td>
<td>Others</td>
<td>3.34</td>
<td>111.59</td>
<td>3.34</td>
</tr>
<tr>
<td>11</td>
<td>Food</td>
<td>8.18</td>
<td>112.33</td>
<td>8.18</td>
</tr>
<tr>
<td>12</td>
<td>Housing</td>
<td>10.00</td>
<td>113.57</td>
<td>10.00</td>
</tr>
<tr>
<td>13</td>
<td>Trans</td>
<td>8.90</td>
<td>117.21</td>
<td>2.90</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>100.00</td>
<td></td>
<td>91</td>
</tr>
</tbody>
</table>

- Médiane pondérée

Dans cet exemple, nous présentons le calcul de l’indice **WMEDIAN**. C’est l’indice d’inflation sous-jacente mesuré par la médiane pondérée. La médiane pondérée est la valeur au centre de la distribution pondérée et ordonnée. Elle prend la valeur qui correspond au moment où la distribution pondérée est divisée en deux parties égales (chaque partie occupe 50% de la pondération).
Chapitre 2: Les approches statistiques

Pour effectuer ce calcul il faut d’abord ordonner l’échantillon, puis calculer les pondérations cumulées (voir la colonne E du Tableau 12)

Tableau 12 : EXEMPLE DU CALCUL DE LA MÉDIANE PONDÉRÉE

<table>
<thead>
<tr>
<th>A</th>
<th>B Groupes de biens et services</th>
<th>C Pondération initiale (%)</th>
<th>D Sous-indices d'IPC</th>
<th>E Pondération cumulée (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Post</td>
<td>2.72</td>
<td>96.26</td>
<td>2.72</td>
</tr>
<tr>
<td>2</td>
<td>Culture</td>
<td>3.83</td>
<td>100.77</td>
<td>6.55</td>
</tr>
<tr>
<td>3</td>
<td>Health</td>
<td>5.60</td>
<td>103.05</td>
<td>12.15</td>
</tr>
<tr>
<td>4</td>
<td>Household</td>
<td>8.65</td>
<td>104.91</td>
<td>20.80</td>
</tr>
<tr>
<td>5</td>
<td>Foodstuff</td>
<td>24.35</td>
<td>105.43</td>
<td>45.15</td>
</tr>
<tr>
<td>6</td>
<td>Garment</td>
<td>7.28</td>
<td>105.82</td>
<td>52.43</td>
</tr>
<tr>
<td>7</td>
<td>Edu</td>
<td>5.72</td>
<td>106.26</td>
<td>58.15</td>
</tr>
<tr>
<td>8</td>
<td>BEV</td>
<td>4.03</td>
<td>106.75</td>
<td>62.18</td>
</tr>
<tr>
<td>9</td>
<td>Food services</td>
<td>7.40</td>
<td>109.81</td>
<td>69.58</td>
</tr>
<tr>
<td>10</td>
<td>Others</td>
<td>3.34</td>
<td>111.59</td>
<td>72.92</td>
</tr>
<tr>
<td>11</td>
<td>Food</td>
<td>8.18</td>
<td>112.33</td>
<td>81.10</td>
</tr>
<tr>
<td>12</td>
<td>Housing</td>
<td>10.00</td>
<td>113.57</td>
<td>91.10</td>
</tr>
<tr>
<td>13</td>
<td>Trans</td>
<td>8.90</td>
<td>117.21</td>
<td>100.00</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>100.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

La pondération cumulée atteint 50% entre les valeurs 105.43 du groupe «FOODSTUFF» et 105.82 du groupe «GARMENT» (les données en rouges dans le tableau). La médiane pondérée est égale à :

\[
IPC^{WMEDIAN} = 105.82 - \left[(105.82 - 105.43) \times \frac{(52.43 - 50)}{45.15} \right] = 105.69
\]

(2.55)

• La mesure avec pondérations réduites

Pour cette mesure, il faut utiliser les informations relatives aux écarts-types des 13 sous-indices d’inflation. Dans notre cas, ces écarts-types sont calculés avec l’échantillon allant du mois de janvier 2009 au mois d’avril 2012 (voir la colonne E du Tableau 13).
Pour chaque sous-indice, on divise sa pondération initiale par son écart-
type standardisé (voir la colonne F du Tableau 13). On normalise ensuite les
nouvelles pondérations en divisant chaque nouvelle pondération par leur total. Il en résulte finalement une série de pondérations modifiées (voir la colonne G du Tableau 13).

Tableau 13 : EXEMPLE DU CALCUL DE LA MESURE À PONDÉRATIONS RÉDUITES

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Post</td>
<td>2.72</td>
<td>96.26</td>
<td>3.20</td>
<td>0.85</td>
<td>3.46</td>
</tr>
<tr>
<td>2</td>
<td>Culture</td>
<td>3.85</td>
<td>100.77</td>
<td>2.50</td>
<td>1.53</td>
<td>6.24</td>
</tr>
<tr>
<td>3</td>
<td>Health</td>
<td>5.60</td>
<td>103.05</td>
<td>1.80</td>
<td>3.11</td>
<td>12.68</td>
</tr>
<tr>
<td>4</td>
<td>Household</td>
<td>8.65</td>
<td>104.91</td>
<td>2.30</td>
<td>3.76</td>
<td>15.33</td>
</tr>
<tr>
<td>5</td>
<td>Foodstuff</td>
<td>24.35</td>
<td>105.43</td>
<td>10.80</td>
<td>2.25</td>
<td>9.19</td>
</tr>
<tr>
<td>6</td>
<td>Garment</td>
<td>7.28</td>
<td>105.82</td>
<td>2.70</td>
<td>2.70</td>
<td>10.99</td>
</tr>
<tr>
<td>7</td>
<td>Edu</td>
<td>5.72</td>
<td>106.26</td>
<td>7.90</td>
<td>0.72</td>
<td>2.95</td>
</tr>
<tr>
<td>8</td>
<td>BEV</td>
<td>4.05</td>
<td>106.75</td>
<td>1.90</td>
<td>2.12</td>
<td>8.54</td>
</tr>
<tr>
<td>9</td>
<td>Food services</td>
<td>7.40</td>
<td>109.81</td>
<td>6.30</td>
<td>1.17</td>
<td>4.79</td>
</tr>
<tr>
<td>10</td>
<td>Others</td>
<td>3.34</td>
<td>111.59</td>
<td>1.00</td>
<td>3.34</td>
<td>13.61</td>
</tr>
<tr>
<td>11</td>
<td>Food</td>
<td>8.18</td>
<td>112.33</td>
<td>12.30</td>
<td>0.67</td>
<td>2.71</td>
</tr>
<tr>
<td>12</td>
<td>Housing</td>
<td>10.00</td>
<td>113.57</td>
<td>7.30</td>
<td>1.37</td>
<td>5.58</td>
</tr>
<tr>
<td>13</td>
<td>Trans</td>
<td>8.90</td>
<td>117.21</td>
<td>9.50</td>
<td>0.94</td>
<td>3.82</td>
</tr>
<tr>
<td>Total</td>
<td>100.00</td>
<td>24.54</td>
<td>100.00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

L’inflation sous-jacente est alors mesurée comme la moyenne pondérée
des sous-indices de prix en utilisant les pondérations modifiées qui viennent
d’être calculées.

\[IPC_{DOWN} = \frac{[(96.26\times3.46)+(100.77\times6.24)+(103.05\times12.68)+\cdots+(117.21\times3.82)]}{100} = 106.76 \]

(2.56)

43 Pour assurer que la somme totale des pondérations égale à 100%.
Annexe 2: ESTIMATION DU MODÈLE À FACTEUR DYNAMIQUE - $\gamma_t = 1$

DLM - Estimation by BFGS
Convergence in 2 Iterations. Final criterion was $0.0000098 \leq 0.0000100$

Monthly Data From 2006:01 To 2013:09

<table>
<thead>
<tr>
<th>Usable Observations</th>
<th>93</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rank of Observables</td>
<td>828</td>
</tr>
<tr>
<td>Log Likelihood</td>
<td>-1104.7918</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coeff</th>
<th>Std Error</th>
<th>T-Stat</th>
<th>Signif</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHI1</td>
<td>1.73147636</td>
<td>0.01387613</td>
<td>124.78092</td>
<td>0.000000000</td>
</tr>
<tr>
<td>PHI2</td>
<td>-0.75959783</td>
<td>0.01372738</td>
<td>-55.33450</td>
<td>0.000000000</td>
</tr>
<tr>
<td>SIGMA(1)</td>
<td>5.08587525</td>
<td>0.75882253</td>
<td>6.70233</td>
<td>0.000000000</td>
</tr>
<tr>
<td>SIGMA(2)</td>
<td>0.18301058</td>
<td>0.02940807</td>
<td>6.22314</td>
<td>0.000000000</td>
</tr>
<tr>
<td>SIGMA(3)</td>
<td>0.05939712</td>
<td>0.01170486</td>
<td>5.07457</td>
<td>0.00000039</td>
</tr>
<tr>
<td>SIGMA(4)</td>
<td>4.10594900</td>
<td>0.01136300</td>
<td>6.65124</td>
<td>0.000000000</td>
</tr>
<tr>
<td>SIGMA(5)</td>
<td>0.05143352</td>
<td>0.01124723</td>
<td>4.57299</td>
<td>0.00000481</td>
</tr>
<tr>
<td>SIGMA(6)</td>
<td>13.03638632</td>
<td>1.93672342</td>
<td>6.73219</td>
<td>0.000000000</td>
</tr>
<tr>
<td>SIGMA(7)</td>
<td>1.68792098</td>
<td>0.25875315</td>
<td>6.52329</td>
<td>0.000000000</td>
</tr>
<tr>
<td>SIGMA(8)</td>
<td>0.34404086</td>
<td>0.05316848</td>
<td>6.47077</td>
<td>0.000000000</td>
</tr>
<tr>
<td>SIGMA(9)</td>
<td>0.45436453</td>
<td>0.07143024</td>
<td>6.36095</td>
<td>0.000000000</td>
</tr>
<tr>
<td>SIGMA2</td>
<td>0.08000085</td>
<td>0.01644390</td>
<td>4.85992</td>
<td>0.00000112</td>
</tr>
<tr>
<td>MEA</td>
<td>11.3603698</td>
<td>0.00000000</td>
<td>0.00000</td>
<td>0.000000000</td>
</tr>
<tr>
<td>GAMMA(1)</td>
<td>1.00000000</td>
<td>0.00000000</td>
<td>0.00000</td>
<td>0.000000000</td>
</tr>
<tr>
<td>GAMMA(2)</td>
<td>1.00000000</td>
<td>0.00000000</td>
<td>0.00000</td>
<td>0.000000000</td>
</tr>
<tr>
<td>GAMMA(3)</td>
<td>1.00000000</td>
<td>0.00000000</td>
<td>0.00000</td>
<td>0.000000000</td>
</tr>
<tr>
<td>GAMMA(4)</td>
<td>1.00000000</td>
<td>0.00000000</td>
<td>0.00000</td>
<td>0.000000000</td>
</tr>
<tr>
<td>GAMMA(5)</td>
<td>1.00000000</td>
<td>0.00000000</td>
<td>0.00000</td>
<td>0.000000000</td>
</tr>
<tr>
<td>GAMMA(6)</td>
<td>1.00000000</td>
<td>0.00000000</td>
<td>0.00000</td>
<td>0.000000000</td>
</tr>
<tr>
<td>GAMMA(7)</td>
<td>1.00000000</td>
<td>0.00000000</td>
<td>0.00000</td>
<td>0.000000000</td>
</tr>
<tr>
<td>GAMMA(8)</td>
<td>1.00000000</td>
<td>0.00000000</td>
<td>0.00000</td>
<td>0.000000000</td>
</tr>
<tr>
<td>GAMMA(9)</td>
<td>1.00000000</td>
<td>0.00000000</td>
<td>0.00000</td>
<td>0.000000000</td>
</tr>
</tbody>
</table>
Annexe 3: ESTIMATION DU MODÈLE À FACTEUR DYNAMIQUE - γ_i

LIBRES

DLM - Estimation by BFGS
Convergence in 64 Iterations. Final criterion was 0.0000000 <= 0.0000100
Monthly Data From 2006:01 To 2013:09
Usable Observations 93
Rank of Observables 828
Log Likelihood -1082.8367

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coeff</th>
<th>Std Error</th>
<th>T-Stat</th>
<th>Signif</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHI1</td>
<td>1.73371735</td>
<td>0.05813320</td>
<td>29.82319</td>
<td>0.00000000</td>
</tr>
<tr>
<td>PHI2</td>
<td>-0.76201866</td>
<td>0.05928156</td>
<td>-12.85423</td>
<td>0.00000000</td>
</tr>
<tr>
<td>SIGMA(1)</td>
<td>3.42699990</td>
<td>0.52817332</td>
<td>6.48840</td>
<td>0.00000000</td>
</tr>
<tr>
<td>SIGMA(2)</td>
<td>0.16606322</td>
<td>0.02531027</td>
<td>6.56110</td>
<td>0.00000000</td>
</tr>
<tr>
<td>SIGMA(3)</td>
<td>0.05320683</td>
<td>0.01268594</td>
<td>4.19416</td>
<td>0.00000273</td>
</tr>
<tr>
<td>SIGMA(4)</td>
<td>3.94015438</td>
<td>0.55726390</td>
<td>7.07054</td>
<td>0.00000000</td>
</tr>
<tr>
<td>SIGMA(5)</td>
<td>0.06526319</td>
<td>0.01180009</td>
<td>5.53073</td>
<td>0.00000003</td>
</tr>
<tr>
<td>SIGMA(6)</td>
<td>12.85189469</td>
<td>1.53040805</td>
<td>8.39769</td>
<td>0.00000000</td>
</tr>
<tr>
<td>SIGMA(7)</td>
<td>1.63593811</td>
<td>0.24626737</td>
<td>6.64293</td>
<td>0.00000000</td>
</tr>
<tr>
<td>SIGMA(8)</td>
<td>0.34969693</td>
<td>0.05355317</td>
<td>6.52994</td>
<td>0.00000000</td>
</tr>
<tr>
<td>SIGMA(9)</td>
<td>0.42036379</td>
<td>0.06201574</td>
<td>6.77834</td>
<td>0.00000000</td>
</tr>
<tr>
<td>SIGMA2</td>
<td>0.01510658</td>
<td>0.00335832</td>
<td>4.49825</td>
<td>0.00000065</td>
</tr>
<tr>
<td>GAMMA(1)</td>
<td>8.60569770</td>
<td>0.93700035</td>
<td>9.18431</td>
<td>0.00000000</td>
</tr>
<tr>
<td>GAMMA(2)</td>
<td>2.42469990</td>
<td>0.23257642</td>
<td>10.42539</td>
<td>0.00000000</td>
</tr>
<tr>
<td>GAMMA(3)</td>
<td>2.46408828</td>
<td>0.19354605</td>
<td>12.73102</td>
<td>0.00000000</td>
</tr>
<tr>
<td>GAMMA(4)</td>
<td>3.62298025</td>
<td>1.04024213</td>
<td>3.48282</td>
<td>0.00049615</td>
</tr>
<tr>
<td>GAMMA(5)</td>
<td>2.10397584</td>
<td>0.19147472</td>
<td>10.98827</td>
<td>0.00000000</td>
</tr>
<tr>
<td>GAMMA(6)</td>
<td>-0.08926326</td>
<td>1.87517455</td>
<td>-0.04760</td>
<td>0.96203293</td>
</tr>
<tr>
<td>GAMMA(7)</td>
<td>0.91485323</td>
<td>0.67147600</td>
<td>1.36245</td>
<td>0.17305556</td>
</tr>
<tr>
<td>GAMMA(8)</td>
<td>2.57471304</td>
<td>0.29155888</td>
<td>8.83065</td>
<td>0.00000000</td>
</tr>
<tr>
<td>GAMMA(9)</td>
<td>1.35360434</td>
<td>0.26594987</td>
<td>5.08970</td>
<td>0.00000003</td>
</tr>
</tbody>
</table>
Annexe 4: NOUVEAUX JEUX DE PONDÉRATIONS

<table>
<thead>
<tr>
<th></th>
<th>Pondération initiale (%)</th>
<th>Nouvelle pondération</th>
<th>Modèle de facteur</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>De 2009-01 à 2012-05</td>
<td>De 2012-05 à 2013-09</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post</td>
<td>2.70</td>
<td>3.50</td>
<td>24.20</td>
</tr>
<tr>
<td>Trans</td>
<td>8.90</td>
<td>3.80</td>
<td>4.80</td>
</tr>
<tr>
<td>Housing</td>
<td>10.00</td>
<td>5.60</td>
<td>5.60</td>
</tr>
<tr>
<td>Edu</td>
<td>5.70</td>
<td>2.90</td>
<td>4.20</td>
</tr>
<tr>
<td>Health</td>
<td>5.60</td>
<td>12.70</td>
<td>0.30</td>
</tr>
<tr>
<td>Culture</td>
<td>3.80</td>
<td>6.30</td>
<td>8.80</td>
</tr>
<tr>
<td>Others</td>
<td>3.30</td>
<td>13.70</td>
<td>2.00</td>
</tr>
<tr>
<td>Garment</td>
<td>7.30</td>
<td>10.80</td>
<td>13.60</td>
</tr>
<tr>
<td>Brev</td>
<td>4.00</td>
<td>8.50</td>
<td>5.40</td>
</tr>
<tr>
<td>Household</td>
<td>8.70</td>
<td>15.50</td>
<td>10.80</td>
</tr>
<tr>
<td>Foodstuff</td>
<td>24.35</td>
<td>9.20</td>
<td>13.40</td>
</tr>
<tr>
<td>Foodservice</td>
<td>7.40</td>
<td>4.80</td>
<td>3.40</td>
</tr>
<tr>
<td>Food</td>
<td>8.18</td>
<td>2.70</td>
<td>3.50</td>
</tr>
</tbody>
</table>

100 100 100 100
Chapitre 3

Les approches économétriques

1. Introduction

Notre objectif dans ce chapitre, est non seulement de proposer de nouvelles mesures de l’inflation sous-jacente pour le Vietnam mais également de déterminer ses relations causales avec les autres grandeurs macroéconomiques. Aucune des mesures statistiques abordées dans le chapitre précédent n’établit un lien direct de l’inflation et les autres variables macroéconomiques. L’utilisation de modèles économétriques va donc permettre d’intégrer davantage la théorie macro-économique à la mesure de l’inflation sous-jacente.

Le modèle *SVAR de Quah et Vahey (1995)* est notre premier choix. Ce modèle possède une logique claire qui relie la définition de l’inflation sous-jacente avec une méthodologie d’estimation. L’idée fondamentale qui sert de base à la définition de l’inflation sous-jacente, de Quah et Vahey, est très intéressante et s’articule très bien avec la littérature macro-économique introduite dans le modèle AD-AS. De ce fait, cette définition est souvent reconnue comme une représentation claire mais facilement calculable de l’inflation sous-jacente. Les arguments dans la définition de Quah et Vahey
sont adaptés au cadre statistique d’un modèle SVAR. L’hypothèse de l’indépendance entre le prix et la production aux points d’équilibre macro-économique de long terme est notamment capturée par une contrainte identifiante sur les multiplicateurs cumulés totaux du modèle. Le modèle permet ainsi non seulement d’analyser la relation réciproque qui existe entre l’inflation et la production agrégée mais encore d’extraire l’indice d’inflation sous-jacente.

La limite principale du modèle SVAR est d’être uniquement utilisable avec des variables stationnaires. Ceci soulève certains problèmes car la plupart des variables macroéconomiques ne sont pas stationnaires. Les variables d’entrée du modèle doivent donc être transformées avant d’être utilisées dans une modélisation stationnaire. La nature des variables d’entrées du modèle est donc modifiée par cette transformation. Les relations entre les variables initiales ne sont donc capturées dans ce type de modèle qu’à travers les variables transformées. C’est le point principal sur lequel ce modèle a été critiqué.

Ce fait nous conduit à compléter l’analyse du modèle SVAR par une modélisation alternative qui soit capable de traiter les variables non-stationnaires mais co-intégrées. Les liens macro-économiques entre les variables du système peuvent alors être capturés de façon plus directe et les résultats deviennent plus efficaces. Le modèle à tendances communes semble être l’outil économétrique adapté à cette situation et s’avérer plus informatif que le modèle SVAR Quah et Vahey. Cependant, dans la pratique, contrairement au modèle SVAR Quah et Vahey, ce modèle à tendances communes est rarement utilisé pour évaluer l’inflation sous-jacente.

En ce qui concerne la littérature macro-économique relative à l’inflation, il est important de rappeler les deux relations distinctes entre l’inflation et la production. À long terme, la production est indépendante de l’inflation mais à

La technique du modèle SVAR Quah et Vahey se fonde sur ce point. Il résulte directement du modèle SVAR d’un indice d’inflation sous-jacente et d’un indice de production potentielle. L’inflation transitoire est la différence entre l’inflation sous-jacente et l’inflation observée. Pareillement, la différence entre la production potentielle et la production réelle est l’écart de production. La relation à court terme et la relation à long terme entre l’inflation et la production peuvent maintenant être vues séparément.

Malheureusement, dans notre cas, l’inflation transitoire et l’écart de production, qui sont indirectement mesurées à l’aide du modèle SVAR, n’exhibent pas une corrélation positive significative, ce qui peut réduire la portée interprétative de certain de nos résultats obtenus à l’aide de ce modèle.

Le modèle à tendances communes sera ensuite appliqué dans l’espoir d’un résultat plus performant. Cependant, nous verrons que la relation positive entre l’inflation transitoire et l’écart de production est à nouveau non significative.
Nous nous tournerons donc finalement vers un modèle alternatif de nature différente. Alors que les deux modèles précédents mettent l’accent sur les relations d’équilibre à long terme de l’inflation avec les autres variables macro-économiques, il est possible qu’un modèle qui porte directement sur la relation de court terme puisse davantage répondre aux caractéristiques de nos données.

Nous nous tournons donc finalement vers le modèle à composantes non observées. Les raisons de notre choix sont les suivantes. D’abord ce modèle est établi en se fondant sur la courbe de Philips à courte terme. Il capture donc directement la relation entre l’inflation transitoire et l’écart de production. Ensuite, ce modèle est capable de décomposer l’inflation en plus de deux composantes. Les résultats des deux modélisations précédentes suggèrent en effet qu’il est insuffisant, dans le cas du Vietnam, de chercher à scinder l’inflation en deux composantes uniquement. Il est en effet possible qu’il existe des variations irrégulières de l’inflation qui doivent être séparées de ces deux composantes principales.

Au total dans ce chapitre, trois modélisations économétriques seront donc succécutivement utilisées pour mesurer l’inflation sous-jacente. Pour chaque modélisation, nous présenterons successivement la théorie macroéconomique fondamentale du modèle, la méthodologie d’estimation et enfin, l’application dans le cas du Vietnam.

Le plan suivi dans ce chapitre est le suivant. La première section présente le modèle SVAR. La deuxième présente le modèle à tendances communes. La troisième présente le modèle à composantes non observées. La dernière résume les résultats principaux de ce chapitre.
2. Le modèle SVAR de Quah et Vahey

“Core inflation is defined as that component of measured inflation that has no medium to long run impact on real output” – Quah and Vahey (1995.)

2.1 Le cadre économétrique du modèle SVAR de Quah et Vahey

L’approche d’estimation de l’inflation sous-jacente développée par Quah et Vahey est mise en œuvre via un modèle vectoriel autorégressif structurel (SVAR) à deux variables : la production y et l’inflation π. Ce système est impacté par deux chocs structurels et indépendants l’un de l’autre, nommés respectivement choc fondamental et choc non-fondamental. Les mouvements des variables dans ce système résultent des effets accumulés au fil du temps par ces deux chocs. Ces chocs structurels se distinguent par leurs impacts à long terme sur le niveau de production réelle. Les chocs fondamentaux n’ont aucun impact à moyen et à long terme sur la production réelle tandis que les chocs non-fondamentaux peuvent influencer de façon permanente la production et générer ainsi la production potentielle. Les chocs fondamentaux peuvent donc être assimilés à des chocs de demande agrégée alors que les chocs non fondamentaux sont plutôt interprétables comme des chocs d’offre agrégée. La composante de l’inflation observée qui résulte des effets accumulés des chocs fondamentaux est alors définie comme l’inflation sous-jacente.

Économétriquement, l’idée de Quah et Vahey peut être exprimée comme :

$$\begin{bmatrix} y_t \\ \pi_t \end{bmatrix} = \begin{bmatrix} \nu_1 \\ \nu_2 \end{bmatrix} + \sum_{j=0}^{n} \begin{bmatrix} a_{11,j} & a_{12,j} \\ a_{21,j} & a_{22,j} \end{bmatrix} \begin{bmatrix} e_{1,t-j} \\ e_{2,t-j} \end{bmatrix}$$

(3.1)
avec $a_{1,2,j} = 0$, ce qui correspond à l'hypothèse selon laquelle le choc fondamental n’a aucun impact sur la production réelle à moyen et à long terme.

y est la production ; π est l’inflation ; les chocs structurels e_1, e_2 sont respectivement le choc fondamental et le choc non-fondamental.

L’inflation peut être obtenue par l’équation suivante :

$$\pi_t = v_2 + \sum_{j=0}^{n} a_{21,j} e_{1,j} + \sum_{j=0}^{n} a_{22,j} e_{2,j}$$

(3.2)

Et, l’inflation sous-jacente qui résulte des effets accumulés du choc fondamental sur l’inflation, est égale à :

$$\pi^*_t = v_2 + \sum_{j=0}^{n} a_{22,j} e_{2,j}$$

(3.3)

Méthodologie économique

Le modèle VAR structurel peut être exprimé comme suit :

$$B(L)X_t = \varepsilon_t$$

(3.4)

Où

$$X_t = (y, \pi)'$$ et $$\varepsilon_t = (\varepsilon_s, \varepsilon_d)'$$

(3.5)

La matrice de covariance entre les chocs structurels ε_t est normalisée de façon à être égale à la matrice identité I.

La méthodologie des modèles VAR structurels suppose que les mouvements des variables résultent des effets cumulés des chocs actuels et passés.
La représentation moyenne mobile structurelle et la matrice des coefficients à long terme de ces chocs sont :

\[X_t = \nu + A_0 e_t + A_1 e_{t-1} + A_2 e_{t-2} + \cdots + A_\infty e_{t-\infty} \quad (3.6) \]

\[A(1) = A_0 + A_1 + A_2 + \cdots + A_\infty \quad (3.7) \]

Le problème de simultanéité rend impossible l’identification de la matrice des impacts contemporains \(A_0 \). Afin de résoudre ce problème nous estimons tout d’abord la forme réduite de la représentation du vecteur autorégressif :

\[X_t = \nu + \varepsilon_t + C_1 \varepsilon_{t-1} + C_2 \varepsilon_{t-2} + \cdots + C_\infty \varepsilon_{t-\infty} \quad (3.8) \]

Nous en déduisons ensuite la matrice \(C(1) \) des effets multiplicateurs des innovations du modèle VAR estimé :

\[C(1) = I + C_1 + C_2 + \cdots + C_\infty \quad (3.9) \]

D’autre part, la comparaison de la forme structurelle et de la forme réduite du modèle montre que les innovations de la forme réduite peuvent être liées aux innovations de la forme structurelle selon :

\[\varepsilon_t = A_0 e_t \quad (3.10) \]

Les matrices de variance-covariance des innovations de ces deux formes sont donc reliées comme suit:

\[E(\varepsilon_t \varepsilon'_t) = A_0 \Omega A'_0 = \Sigma \quad (3.11) \]

L’hypothèse clé que les chocs structurels sont non corrélés et la normalisation de leur matrice de variances implique que \(\Omega \) est une matrice
identité. Ceci nous permet d’établir un lien direct entre la matrice non-
identifiée A_0 et la matrice de variance-covariance de la forme réduite :

$$E(\varepsilon_i \varepsilon_i') = \Sigma = A_0 A_0'$$ \hspace{1cm} (3.12)

La matrice des effets multiplicateurs cumulés des innovations de la
forme structurelle $A(1)$ et la matrice des effets multiplicateurs cumulés des
innovations de la forme réduite $C(1)$ sont donc finalement reliées comme suit :

$$A(1) = C(1)A_0$$ \hspace{1cm} (3.13)

Avec un modèle VAR contenant n variables indépendantes, A_0 contient
n^2 éléments inconnus alors que la matrice de variance covariance de la forme
réduite contient $\left\lfloor \frac{n^2-n}{2} \right\rfloor + n$ éléments connus. Il est donc nécessaire d’obtenir
$\frac{n^2-n}{2}$ restrictions supplémentaires afin d’identifier complètement le modèle
SVAR. Dans le cas du modèle de Quah et Vahey, $n = 2$, de sorte qu’une seule
restriction doit être imposée sur le système. Une possibilité est d’imposer les
restrictions à court terme sur la matrice des impacts A_0. Une autre possibilité,
est d’utiliser une restriction d’identification de long terme, comme proposée
par Blanchard et Quah (1989) qui consiste à imposer que les effets cumulés
d’un choc sur certaines variables soient nuls. Dans le cas du modèle SVAR de
Quah et Vahey, ce deuxième ensemble de restrictions convient parfaitement à
la verticalité de la courbe de Phillips de long terme.

Étant données ces restrictions, la matrice $A(1)$ prend donc finalement la
forme suivante :

$$A(1) = \begin{bmatrix} a_{11,j} & 0 \\ a_{21,j} & a_{22,j} \end{bmatrix}$$ \hspace{1cm} (3.14)
Auyant complètement identifié le modèle structurel, la mesure d’inflation sous-jacente de VAR structurel est ensuite dérivée de la représentation du vecteur de moyenne mobile de l’inflation observée :

\[
\pi_t = v_2 + \sum_{j=0}^{n} a_{21,j} e_{1,t-j} + \sum_{j=0}^{n} a_{22,j} e_{2,t-j}
\]

(3.15)

Conformément à la définition de l’inflation sous-jacente proposée par Quah et Vahey, l’inflation sous-jacente est ainsi donnée par l’équation :

\[
\pi_t^* = v_2 + \sum_{j=0}^{n} a_{22,j} e_{2,t-j}
\]

(3.16)

2.2 Revue de la littérature

Parmi tous les modèles économétriques utilisables pour mesurer l’inflation sous-jacente, celui de Quah et Vahey est le plus couramment appliqué. Il apparaît dans de nombreuses études portant sur l’inflation sous-jacente dans plusieurs pays. Et de ce fait, diverses modifications et extensions de cette approche sont suggérées dans la littérature. Le modèle est devenu un sujet de recherche attrayant pendant une dizaine d’années. Jusqu’à présent, soit près de 20 ans après sa création, la modélisation SVAR est encore largement utilisée. Les principales évolutions de cette méthodologie et de son application à la mesure de l’inflation sous-jacente sont résumées sur les deux figures 22 et 23 suivantes :
Cette sous-section présente les tentatives d’utilisation du modèle SVAR de Quah et Vahey pour évaluer l’inflation sous-jacente.

Si le modèle SVAR de Quah et Vahey capture bien les éléments essentiels du cadre macro-économique sous-jacente et est assez facile à mettre en œuvre, le fait de ne retenir que deux variables ne permet d’identifier que deux chocs. Pour cette raison, certains auteurs ont préféré utiliser un modèle plus large et qui se base sur un ensemble de variables élargi.
Plusieurs études et articles ont donc été centrés sur l’amélioration de ce modèle. La première mentionnée est ici celle de Blix (1995). Blix étend le modèle de Quah et Vahey dans deux directions. Premièrement, il établit un système trivarié au lieu d’un système bivarié en y ajoutant le logarithme de la masse monétaire. Le modèle prévoit donc un lien direct entre la masse monétaire et l’inflation sous-jacente. Deuxièmement, il exploite la relation cointégrée entre la production, le prix et la monnaie dans la construction d’un modèle à tendance commune pour estimer l’inflation sous-jacente.\footnote{Ce modèle a ensuite été développé à une mesure de l’inflation sous-jacente. Nous mentionnerons le détail de ce modèle dans la section 4 de ce chapitre.}

L’idée de Blix d’un modèle trivarié tenant compte du lien potentiel entre la politique monétaire et l’inflation, est ensuite exploité dans l’étude de Dewachter et Lustig (1997) mais avec une petite altération. Dans cette version modifiée, le taux d’intérêt réel est utilisé \((R_t - \pi_t)\), comme une représentant de la politique monétaire, au lieu de la masse monétaire. Le modèle est alors:

\[
\begin{bmatrix}
\Delta \ln y_t \\
R_t - \pi_t \\
\Delta R_t
\end{bmatrix} =
\begin{bmatrix}
v_1 \\
v_2 \\
v_3
\end{bmatrix} + \sum_{j=0}^{\infty} \begin{bmatrix}
a_{11,j} & 0 & 0 \\
a_{21,j} & a_{22,j} & 0 \\
a_{31,j} & a_{32,j} & a_{33,j}
\end{bmatrix} \begin{bmatrix}
\epsilon_{1,t-j} \\
\epsilon_{2,t-j} \\
\epsilon_{3,t-j}
\end{bmatrix}
\]

(3.17)

Les trois types de chocs qui dirigent les mouvements des variables du système sont : le choc d’offre, le choc de demande réelle et le choc de politique monétaire. Les chocs de demande réelle et de politique monétaire sont supposés être neutres sur la production de long terme, \((\sum_{j=1}^{\infty} a_{12,j} = 0; \sum_{j=1}^{\infty} a_{13,j} = 0)\). De plus, le choc de politique monétaire est supposé n’avoir aucun effet contemporain sur la production, \((a_{13} = 0)\). Cette combinaison dans un modèle des effets de court terme et de long terme aboutit alors à la mesure suivante de l’inflation sous-jacente:
Chapitre 3: Les approches économétriques

\[\Delta \pi_t^* = v_3 + (a_{32,0} - a_{22,0})e_{2,t} + (a_{33,0})e_{3,t} + \sum_{j=1}^{\infty} (a_{32,j} + a_{22,j-1} + a_{22,j})e_{2,j-t} + \sum_{j=1}^{\infty} (a_{33,j} + a_{23,j})e_{3,j-t} \quad (3.18) \]

Cette catégorie de modèles prenant en compte la relation cointégée entre les variables aboutit in fine à des représentations du type VECM.

Gartner et Wehinger (1998) capturent pour leur part le choc de politique monétaire, de manière simple : Ils interpoorent simplement le taux d’intérêt nominal à court terme au système, en supposant que cette variable contient les informations relatives à la politique monétaire. Le modèle contient donc un choc d’offre et deux chocs de demande distincts. Les trois restrictions identifiantes sont alors:

Ni le choc de politique monétaire ni le choc de demande réelle n’ont d’effets à long terme sur le niveau de production \((\Sigma_{j=1}^{\infty} a_{12,j} = 0; \Sigma_{j=1}^{\infty} a_{13,j} = 0)\) et le choc de demande réelle n’affecte pas le niveau du taux d’intérêt nominal dans le long terme \((\Sigma_{j=1}^{\infty} a_{23,j} = 0)\). Le modèle est alors:

\[
\begin{bmatrix}
\Delta \ln y_t \\
\Delta R_t \\
\pi
\end{bmatrix} =
\begin{bmatrix}
v_1 \\
v_2 \\
v_3
\end{bmatrix} + \sum_{j=0}^{\infty}
\begin{bmatrix}
a_{11,j} & 0 & 0 \\
a_{21,j} & a_{22,j} & 0 \\
a_{31,j} & a_{32,j} & a_{33,j}
\end{bmatrix}
\begin{bmatrix}
e_{1,t-j} \\
e_{2,t-j} \\
e_{3,t-j}
\end{bmatrix}
\quad (3.19)
\]

L’inflation sous-jacente qui résulte de ces deux chocs de demande est enfin donnée par :

\[\pi_t^* = v_3 + \Sigma_{j=1}^{\infty} a_{32,j} * e_{2,t-j} + \Sigma_{j=1}^{\infty} a_{33,j} * e_{3,t-j} \quad (3.20) \]

Ce résultat est différent du celui obtenu par Dewachter et Lustig (1997) et dans lequel le processus d’inflation est principalement conduit par le choc monétaire plutôt que par les chocs de demande. Pour Gartner et Wehinger (1998), l’inflation est essentiellement impactée par la demande. Leurs estimations soutiennent l’opinion selon laquelle l’inflation est essentiellement un phénomène monétaire.
Bjørnland (2001) argumente que, outre le choc fondamental et le choc non fondamental du système de Quah et Vahey, certains autres chocs peuvent avoir des effets persistants sur la production et l’inflation. C’est par exemple le cas du choc de prix d’énergie. Dans le cas d’un petit pays producteur de pétrole comme la Norvège, la politique domestique n’a que des influences limitées sur le prix de pétrole. Le prix de pétrole est dominé par un groupe des grands producteurs comme l’OPEC et par le marché mondiale. À partir de ces arguments, Bjørnland (2001) a modifié le système SVAR bivarié de Quah et Vahey (1995) en un système trivarié se composant d’un choc supplémentaire – le choc du prix de pétrole. Ce dernier peut être simplement identifié en imposant une restriction dans laquelle aucun choc domestique ne peut influencer le prix du pétrole à long terme ($\Sigma_{j=1}^{\infty} a_{12,j} = 0 ; \Sigma_{j=1}^{\infty} a_{13,j} = 0$). L’autre contrainte pour ce système peut d’être obtenue à partir de la propriété traditionnelle de la courbe de Phillips à long terme, comme dans le modèle de Quah-Vahey. Le modèle est alors :

$$
\begin{bmatrix}
\Delta \ln\sigma \\
\Delta \ln y_t \\
\pi
\end{bmatrix} =
\begin{bmatrix}
v_1 \\
v_2 \\
v_3
\end{bmatrix}
+ \sum_{j=0}^{\infty}
\begin{bmatrix}
a_{11,j} & 0 & 0 \\
a_{21,j} & a_{22,j} & 0 \\
a_{31,j} & a_{32,j} & a_{33,j}
\end{bmatrix}
\begin{bmatrix}
e_{1,t-j} \\
e_{2,t-j} \\
e_{3,t-j}
\end{bmatrix}
$$

(3.21)

Parmi de nombreuses versions dérivées du modèle SVAR Quah et Vahey, nous choisissons de présenter seulement les versions qui ont eu une grande influence en économie appliquée. Cette brève revue montre que le modèle SVAR Quah et Vahey est assez efficace dans le rôle de mesurer de l’inflation sous-jacente. Néanmoins, ce modèle peut nécessiter d’être complété par la prise en compte des propriétés d’intégration et de co-intégration de certaines variables centrales pour modéliser l’inflation et l’inflation sous-jacente.

2.3 Estimation et discussion
Chapitre 3: Les approches économétriques

Du point de vue des données, de la même façon que dans le modèle de Quah et Vahey, nous retenons les séries mensuelles de l’inflation et de la production industrielle. La production industrielle représente une proxy variable pour la production économique. En fait, lorsqu’on mentionne « la production économique », il s’agit plutôt du PIB – le produit intérieur brut. Cependant, les données du PIB ne sont disponibles que sous forme de bases semestrielles et annuelles tandis que la production industrielle est une série mensuelle. Les séries vietnamiennes sont en effet assez courtes et inférieures à 15 années. L’utilisation de séries mensuelles peut donc permettre de partiellement contourner cette difficulté. La période d’observation est de 1996:01 à 2012:0945. Les données ont comme source principale l’IFS et le GSO vietnam.

Étape 1 : Test de stationarité

Tableau 14: TEST DE DICKEY FULLER AUGMENTÉ POUR LA SÉRIE INF

<table>
<thead>
<tr>
<th>Hypothèse nulle: INF a une racine unitaire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Déterministes : Constante, Tendance linéaire</td>
</tr>
<tr>
<td>Nombre de retards: 14</td>
</tr>
<tr>
<td>(le nombre de retards a été déterminé par le critère d'information d'Akaike)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Statistique T</th>
<th>Valeur p</th>
</tr>
</thead>
<tbody>
<tr>
<td>-4.064100</td>
<td>0.0084</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Valeurs critiques:</th>
<th>Statistique T</th>
</tr>
</thead>
<tbody>
<tr>
<td>1%</td>
<td>-4.008428</td>
</tr>
<tr>
<td>5%</td>
<td>-3.434299</td>
</tr>
<tr>
<td>10%</td>
<td>-3.141079</td>
</tr>
</tbody>
</table>

45 Cette période d’observation est choisie parce que la série de la production industrielle n’est disponible dans cette période. À partir de 2011, GSO a calculé et publié l’indice de production industrielle pour remplacer la série de la production industrielle en volume. Nous avons réuni ces deux séries pour avoir une série complète mais il y apparaît un pic inexplicable. C’est pour ça, nous décidons à travailler sur la série initiale.
Chapitre 3: Les approches économétriques

Tableau 15: TEST DE Dickey Fuller AUGMENTÉ POUR LA SÉRIE DY

Hypothèse nulle: DY a une racine unitaire
Déterministes : Constante
Nombre de retards: 12

(le nombre de retards a été déterminé par le critère d'information d'Akaike)

<table>
<thead>
<tr>
<th>Statistique</th>
<th>T</th>
<th>Valeur p</th>
</tr>
</thead>
<tbody>
<tr>
<td>-5.221701</td>
<td>0.0000</td>
<td></td>
</tr>
</tbody>
</table>

Valeurs critiques:
- 1%: -3.465392
- 5%: -2.876843
- 10%: -2.575006

Nous examinons respectivement la stationarité de la série d’inflation mensuelle et de la série de taux d’accroissement de la production à l’aide du test de Dickey-Fuller Augmenté. Les résultats qui sont présentés dans les tableaux 14 et 15 montrent que l’inflation mensuelle et le taux d’accroissement de la production sont stationnaires\(^{46}\). En conséquence, nous décidons que le modèle SVAR se compose de ces deux variables : DY et INF.

Étape 2 : Détermination du nombre de retards

Après avoir complété l’utilisation du critères d’Akaike par différents tests de significative, nous avons retenu un modèle SVAR avec 14 décalages.

La forme VMA du modèle SVAR estimée est donnée par :

$$
\begin{bmatrix}
\Delta \ln Y_t \\
\pi_t
\end{bmatrix} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} + \sum_{j=0}^{14} \begin{bmatrix}
a_{11,j} & a_{12,j} \\
a_{21,j} & a_{22,j}
\end{bmatrix} \begin{bmatrix} e_{1,t-j} \\ e_{2,t-j} \end{bmatrix}
$$

(3.22)

Où $\Delta \ln Y_t$ est le taux d’accroissement de la production industrielle et π_t est l’inflation observée. $e_{1,t-j}, e_{2,t-j}$ représentent respectivement les chocs

\(^{46}\) On dénote : INF pour l’inflation et DY pour le taux d’accroissement de la production
d’offre agrégée (ou choc fondamental) et de demande agrégée (ou choc non fondamental). Ces chocs structurels sont distingués dans le modèle Quah-Vahey par leurs effets différents à long terme sur la production. Étant donné que le choc \(c_t \) n’a pas d’impact cumulé de long-terme sur la production, il vient \(\sum_{j=0}^{\infty} a_{12,j} = 0 \) de sorte que la production est indépendante des chocs de demande à long terme. C’est la restriction de long terme de Blanchard et Quah pour identifier le modèle SVAR.

L’inflation agrégée est ensuite calculé à partir de l’équation :

\[
\pi_t = v_2 + \sum_{j=0}^{14} a_{21,j} e_{1,t-j} + \sum_{j=0}^{14} a_{22,j} e_{2,t-j}
\]
(3.23)

L’inflation sous-jacente qui est défini comme étant égal à l’inflation purgé des effets des chocs d’offre \(e_{1,t-j} \) est enfin calculé à l’aide de l’équation :

\[
\pi_t^* = v_2 + \sum_{j=0}^{14} a_{22,j} e_{2,t-j}
\]
(3.24)

Étape 3 : Estimation de SVAR

Il résulte de l’estimation du modèle au cas du Vietnam à la fois une série d’inflation sous-jacente et une série du taux d’accroissement de la production potentielle. Ces résultats sont représentés graphiquement ci-dessous (Figures 24, 25 et 27):

Figure 24: INDICE D’INFLATION SOUS-JACENTE ANNUELLE MESURÉ À L’AIDE DU MODÈLE SVAR DE QUAH-VAHEY
En observant les deux séries reportées dans le graphique, il apparaît un mouvement commun entre l’inflation sous-jacente estimée et l’inflation observée. L’inflation sous-jacente progresse au même rythme que l’inflation observée avec des pics et des creux qui coïncident bien avec ceux de l’inflation observée. Ceci est plus clair dans le graphique présentant simultanément les deux séries mensuelles (voire figure 25). Cependant, il existe clairement un écart entre ces deux séries, qui est notamment plus important pendant la période qui débute au milieu de l’année 2005 et finit au milieu de l’année 2006. Ces graphiques semblent donc montrer que la méthode SVAR permet de capturer assez correctement le mouvement global de l’inflation.

L’adéquation du modèle

La qualité statistique du modèle est évaluée à partir des analyses statistiques suivantes :

- la vérification des propriétés des résidus du modèle ;
- la vérification des réponses aux chocs ;
- l’analyse de la décomposition des variances du modèle.

Les résidus du modèle SVAR estimé sont notés VRES(1) pour la première équation et VRES(2) pour la deuxième équation.
Chapitre 3: Les approches économétriques

Tableau 16: TESTS DE JARQUE BERA DE NORMALITÉ DES RÉSIDUS DU MODÈLE SVAR

<table>
<thead>
<tr>
<th></th>
<th>VRES(1)</th>
<th>VRES(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asymétrie</td>
<td>0.6004</td>
<td>0.9707</td>
</tr>
<tr>
<td></td>
<td>(0.0000)</td>
<td>(0.0000)</td>
</tr>
<tr>
<td>Aplattement</td>
<td>2.2912</td>
<td>2.5608</td>
</tr>
<tr>
<td></td>
<td>(0.0000)</td>
<td>(0.0000)</td>
</tr>
<tr>
<td>Jarque-Bera</td>
<td>51.8631</td>
<td>80.0368</td>
</tr>
<tr>
<td></td>
<td>(0.0000)</td>
<td>(0.0000)</td>
</tr>
</tbody>
</table>

L’hypothèse de normalité est clairement rejetée pour les deux séries de résidus avec le test de Jarque-Bera.

Nous testons ensuite la non-autocorrélation des résidus avec des tests de type Ljung-Box effectués pour 2, 4, 6, 8, 10 et 12 retards. Les résultats sont présentés ci-dessous (Tableau 17).

L’hypothèse de non autocorrélation des résidus est clairement non rejetée par les données au seuil de 5%.

Malgré le non normalité des résidus révélée par le test de Jarque-Béra, nous considérons que le modèle est admissible du fait de ce non autocorrélation des résidus.

Tableau 17: ANALYSES D’AUTOCORRÉLATION DES RÉSIDUS DU MODÈLE SVAR

<table>
<thead>
<tr>
<th>Retard</th>
<th>Ljung-Box Q-statistiques</th>
<th>VRES(1)</th>
<th>VRES(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Statistique</td>
<td>Niveau</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>significatif</td>
</tr>
<tr>
<td>2</td>
<td>1.238~0.002</td>
<td>0.9938</td>
<td>4.512~0.002</td>
</tr>
<tr>
<td>4</td>
<td>0.349</td>
<td>0.9864</td>
<td>0.110</td>
</tr>
<tr>
<td>6</td>
<td>0.423</td>
<td>0.9986</td>
<td>0.270</td>
</tr>
<tr>
<td>8</td>
<td>0.875</td>
<td>0.9989</td>
<td>0.535</td>
</tr>
<tr>
<td>10</td>
<td>1.275</td>
<td>0.9994</td>
<td>0.678</td>
</tr>
<tr>
<td>12</td>
<td>4.897</td>
<td>0.9613</td>
<td>0.692</td>
</tr>
</tbody>
</table>
Réponses aux chocs

Nous présentons ci-dessous les fonctions de réponses du modèle SVAR (les intervalles de confiance sont calculés par la méthode de Monte Carlo à partir de 10 000 tirages)

Figure 26: RÉPONSES IMPULSIONNELLES AUX CHOCS AVEC LE MODÈLE SVAR

Un choc de demande laisse clairement et presque immédiatement un effet important et positif sur l’inflation. Cet effet converge vers son niveau d’équilibre stable après environ six mois. Le choc de demande n’a qu’un effet cumulé temporaire sur la production. L’influence de ce choc est très faible et s’annule après quelques mois. Ce résultat coïncide bien avec l’hypothèse de la verticalité de la courbe de Phillips à long terme. L’effet d’annulation du choc de demande sur la production à long terme est certes le résultat de la contrainte imposée sur le modèle mais cette contrainte n’influence pas le timing de la réponse de la production industrielle au choc de demande.

Ainsi, les réponses dynamiques de l’inflation et de la production à un choc d’offre sont assez conformes à ce que nous attendions. Un choc d’offre a un effet négatif sur l’inflation à long terme. Cet effet est néanmoins non différent de zéro statistiquement. En retenant les valeurs centrales des fonctions de réponse, notons qu’un point de pourcentage de choc d’offre peut faire
diminuer l’inflation au maximum de 0.5%. Tandis qu’un point de pourcentage de choc de demande peut faire augmenter l’inflation de 2% - un niveau très remarquable car il est égal à une moitié du pic le plus élevé dans l’histoire des évolutions de l’inflation du Vietnam. La croissance économique est enfin exclusivement induite à long terme par les chocs d’offre, ce qui est en conformité avec le cadre classique retenu.

Décomposition des variances

Les résultats retenus de la décomposition des variances permettent de confirmer les résultats des analyses ci-dessus. Les chocs de demande sont la source principale de l’inflation, ils expliquent environ 91% de la variance de l’inflation à long terme (voir le tableau 19). Par contre, ils n’expliquent que 20% des variations de la production. D’autre part, les chocs d’offre représentent environ 80% des variations de la production (voir le tableau 18).

<table>
<thead>
<tr>
<th>Étape</th>
<th>Erreur standard</th>
<th>Chocs d’offre</th>
<th>Chocs de demande</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0361</td>
<td>81.915</td>
<td>18.085</td>
</tr>
<tr>
<td>2</td>
<td>0.0409</td>
<td>83.640</td>
<td>16.360</td>
</tr>
<tr>
<td>3</td>
<td>0.0413</td>
<td>82.247</td>
<td>17.753</td>
</tr>
<tr>
<td>4</td>
<td>0.0416</td>
<td>82.540</td>
<td>17.460</td>
</tr>
<tr>
<td>5</td>
<td>0.0417</td>
<td>82.542</td>
<td>17.458</td>
</tr>
<tr>
<td>10</td>
<td>0.0425</td>
<td>80.914</td>
<td>19.086</td>
</tr>
<tr>
<td>20</td>
<td>0.0477</td>
<td>79.981</td>
<td>20.019</td>
</tr>
<tr>
<td>30</td>
<td>0.0490</td>
<td>79.721</td>
<td>20.279</td>
</tr>
<tr>
<td>50</td>
<td>0.0496</td>
<td>79.504</td>
<td>20.496</td>
</tr>
<tr>
<td>60</td>
<td>0.0496</td>
<td>79.504</td>
<td>20.493</td>
</tr>
</tbody>
</table>
Tableau 19: DÉCOMPOSITION DE LA VARIANCE DE LA SÉRIE INF

<table>
<thead>
<tr>
<th>Étape</th>
<th>Erreur standard</th>
<th>Chocs d’offre</th>
<th>Chocs de demande</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.4799</td>
<td>9.568</td>
<td>90.432</td>
</tr>
<tr>
<td>2</td>
<td>0.5631</td>
<td>9.297</td>
<td>90.703</td>
</tr>
<tr>
<td>3</td>
<td>0.5950</td>
<td>8.646</td>
<td>91.354</td>
</tr>
<tr>
<td>4</td>
<td>0.6382</td>
<td>8.343</td>
<td>91.657</td>
</tr>
<tr>
<td>5</td>
<td>0.6670</td>
<td>8.343</td>
<td>91.565</td>
</tr>
<tr>
<td>10</td>
<td>0.7065</td>
<td>8.248</td>
<td>91.752</td>
</tr>
<tr>
<td>20</td>
<td>0.7160</td>
<td>8.427</td>
<td>91.573</td>
</tr>
<tr>
<td>30</td>
<td>0.7168</td>
<td>8.499</td>
<td>91.501</td>
</tr>
<tr>
<td>50</td>
<td>0.7169</td>
<td>8.507</td>
<td>91.493</td>
</tr>
<tr>
<td>60</td>
<td>0.7169</td>
<td>8.508</td>
<td>91.492</td>
</tr>
</tbody>
</table>

Discussion

Le point le plus important que nous avons retenu de cette analyse est que le modèle SVAR de Quah et Vahey permet d’expliquer assez bien l’influence des chocs d’offre et de demande sur l’inflation et la production. Les signes des fonctions de réponse correspondent en effet assez bien aux effets attendus d’après la théorie macroéconomique.

Une autre relation impliquée dans le modèle AD/AS à long terme, est aussi illustrée dans cette estimation : les chocs d’offre positifs, dans le long terme, contribuent à l’accroissement de la production potentielle. Dans le graphique des réponses aux chocs du système, cette relation est clairement illustrée. La courbe des réponses impulsionnelles de l’inflation aux chocs d’offre positifs à long terme se trouve en dessous de l’axe horizontal et reste stable.

Le modèle permet d’autre part d’évaluer : la production potentielle et l’écart de production. Bien qu’elles ne soient pas d’objet principal de notre étude ces sorties complémentaires du modèle fournissent une preuve indirecte supplémentaire de la qualité globale du modèle. En effet la Figure 27 ci-dessous montre que l’écart de production est bien stationnaire de sorte que la production grante bien autour de son niveau potentiel au Vietnam durant la période examinée\(^{47}\).

Figure 27: PRODUCTION POTENTIELLE ET ÉCART DE PRODUCTION ESTIMÉES DU MODÈLE SVAR

Jusqu’ici, le modèle SVAR semble fournir des résultats interprétables pour la mesure de l’inflation sous-jacente dans le cas du Vietnam. La qualité globale du modèle est révélée par le fait qu’il satisfait principalement les tests de performance statistiques usuels ainsi qu’au fait que toutes les hypothèses macro-économiques non imposées au modèle sont bien validés dans les résultats.

Notons néanmoins que l’estimation de ce type de modèle est très sensible aux variables retenues et à la taille de l’échantillon de données ou le

\(^{47}\) La production potentielle et l’écart de production pour le Vietnam ont été estimés et publiés pour la première fois en 2013 – par le Comité économique de l’Assemblée Vietnamiennne.
nombre d’observations. En fait, en cherchant une estimation optimale de ce modèle, nous avons essayé plusieurs versions différentes du modèle SVAR. Ces versions sont soit ajustées par d’autre variable économique, soit ajustées par des variables nominales. Pourtant, les meilleurs résultats sont systématiquement obtenus avec la version initiale à laquelle on a ajouté une dummy pour la crise économique 2008-2009.

Nous cherchons maintenant à compléter la mesure de l’inflation sous-jacente du Vietnam obtenue à l’aide du modèle SVAR avec une modélisation alternative basée sur des hypothèses statistiques différentes de celles retenues pour le modèle SVAR. Rappelons que la principale contrainte du modèle SVAR est de ne permettre que la modélisation de variables stationnaires. Ce fait cause certains problèmes. Typiquement, l’hypothèse centrale du modèle – « la verticalité de la courbe de production à long terme » – doit être indirectement imposée dans le modèle car la série de production n’est jamais stationnaire et elle doit être transformée en taux d’accroissement avant d’être utilisée dans ce modèle. Cela nous conduit à chercher un système alternatif qui soit capable de traiter directement des variables non-stationnaires mais cointégrées. L’estimation de ce type de modèle permet de capturer la relation de long terme qui existe entre les variables du système comme sur relation d’équilibre entre les niveaux des variables. Les liens macro-économiques entre les variables du système peuvent donc être reflétés de façon plus directe et les résultats devraient s’avérer meilleurs.

À notre connaissance, le modèle à tendance commune peut être une réponse adaptée dans ce cas. De plus, il est possible que ce modèle soit plus informatif comparé au modèle SVAR Quah et Vahey car il permet d’incorporer plus simplement un plus grand nombre de variables. C’est pour ces raisons que dans la section suivante, ce modèle a été choisi pour mesurer l’inflation sous-jacente du Vietnam.
3. **Le modèle à tendances communes**

3.1 **Le modèle à tendances communes appliqué à l’estimation de l'inflation sous-jacente**

L’idée générale de cette mesure est d’extraire l’inflation sous-jacente avec un modèle à tendances communes macroéconomiques de dimension réduite. Dans ce cadre, "l'inflation sous-jacente est interprétée comme la prévision à long terme du taux d'inflation", obtenue à partir des informations contenues dans les variables du système qui sont modélisées sur la base de leurs propriétés de cointégration. L'existence des relations cointégrées entre ces variables implique qu'il existe les relations d'équilibre à long terme entre elles, et que ces variables sont influencés par un ensemble de chocs structurels communs. Ces derniers donnent des effets permanents sur les variables cointégrées et conduisent donc ces variables à évoluer selon les mêmes tendances stochastiques (ces chocs sont connus comme les facteurs impulsant le système). Les variables oscillent donc autour de leurs tendances d’équilibre communes et ne peuvent pas s’écarter durablement de ces tendances. Lorsqu'elles deviennent de leurs tendances d’équilibre, des mécanismes de rééquilibrage se mettent en place pour rétablir la situation d’équilibre. De ce fait, chaque variable dans le système peut être considérée comme la résultante de deux composantes : l’une capture sa tendance permanente qui est commune avec les autres variables et l’autre regroupe ses propres mouvements...
transitoires qui ne sont conditionnés que par les chocs temporaires du système. Ces deux catégories d’impulsion peuvent être directement identifiées dans ce type de modèle de sorte que les composantes des variables du système peuvent également être estimées à l’aide du modèle à tendances communes.

Dans le cas de l’inflation, la tendance permanente de cette variable, qui peut être dérivée du modèle à tendances communes, est considérée comme l’inflation sous-jacente car elle n’est conditionnée que par les chocs permanents du système. Elle exprime donc bien les mouvements sous-jacents de cette variable. C’est à partir de cela que Bagliao et Morana ont développé leur approche pour une mesure de l’inflation sous-jacente des États-Unis, de la Grande-Bretagne et de l’Italie.

Par rapport aux approches statistiques usuelles, cette méthodologie possède de nombreux avantages. D’abord, elle permet d’identifier et de capturer les facteurs qui impactent sur l’évolution à long terme de l'inflation - chose qui est complètement impossible avec les approches purement statistiques de type moyenne pondérée ou moyenne tronquée. Ensuite, ce modèle contient une plus grande source d’informations sur l’inflation en incluant d’autres variables macroéconomiques, en plus de l’inflation et de la production. De plus, comme cette mesure de l’inflation sous-jacente s’accorde avec les propriétés à long terme du système macro-économique qui ont déjà été testées, on peut envisager d’obtenir de meilleures prévisions de l’inflation qu’avec les autres mesures. Les études de Bagliao et Morana sur les données des États-Unis, de la Grande-Bretagne et de l’Italie ont fournis des preuves qui étayent ce point.

Le taux d’inflation sous-jacente estimé à partir d’un modèle à tendances communes dépend beaucoup de la spécification du système, des variables inclues, de la période de l’échantillon, et d’autres choix de modélisation. Il n’est donc pas simple de bien spécifier ce type de modèle. Il est possible que
cette difficulté de modélisation explique en partie pourquoi cette approche n’a pas été largement appliquée bien qu’elle se soit montrée sur certains points supérieurs au modèle SVAR et à d’autres méthodes. À notre connaissance, jusqu’à ce jour, il n’y a qu’une seule étude qui applique avec succès ce modèle : celle de Durai et Ramachandran (2007) pour les données de l’Inde.

Le modèle spécifié par Bagliano et Morana pour les États-Unis envisage un système à quatre variables : le logarithme du prix du pétrole en dollars américains \((oil_t)\); le logarithme de l’indice de production industrielle \((y_t)\); le taux de croissance mensuel de la masse monétaire M2 \((m)\) et l’inflation mensuelle \((\pi)\). L’existence d’une relation cointégrée entre \((m)\) et \((\pi)\) parmi ces 4 variables implique un système dans lequel trois sources de chocs \((\psi_f, \psi_r, \psi_n)\) impulsent le mouvement de long terme des variables et une autre source \((v)\) est responsable des effets transitoires.

Le système est alors réécrit sous la forme d’un modèle à tendances communes comme suit:

\[
\begin{bmatrix}
O_i l_t \\
y_t \\
m_t \\
\pi_t
\end{bmatrix}
= \begin{bmatrix}
oil_0 \\
y_0 \\
m_0 \\
\pi_0
\end{bmatrix} + \begin{bmatrix}
y_{11} & 0 & 0 \\
y_{21} & y_{22} & 0 \\
y_{31} & y_{32} & y_{33} \\
y_{41} & y_{42} & y_{43}
\end{bmatrix} \begin{bmatrix}
\tau_{f,t} \\
\tau_{r,t} \\
\tau_{n,t}
\end{bmatrix} + \Gamma(L) \begin{bmatrix}
\psi_{f,t} \\
\psi_{r,t} \\
\psi_{n,t} \\
v_t
\end{bmatrix}
\]

(3.25)

où \((\psi_f, \psi_r, \psi_n)\) sont respectivement : le choc réel étranger représentant essentiellement les effets des mouvements de prix du pétrole ; le choc réel domestique et le choc nominal domestique. Trois contraintes de nature théorique sont imposées pour identifier le modèle : le choc nominal est supposé avoir aucun effet à long terme sur la production (ce qui correspond à l’hypothèse de neutralité à long terme : \(y_{23} = 0\)); et, le prix du pétrole est un variable étrangère qui ne subit aucun influence des deux chocs réel et nominal domestique \((y_{12} = y_{13} = 0)\). Une fois le modèle correctement identifié, l’inflation sous-jacente est ensuite calculée selon :
Chapitre 3: Les approches économétriques

La tendance de l'inflation est alors déterminée par les trois autres forces : le choc en provenance du marché du pétrole, le choc réel et le choc nominal domestique.

Le taux d'inflation sous-jacente dérivé de ce modèle à tendances communes fournit des informations utiles pour évaluer le comportement à long terme de l'inflation. Il a un pouvoir prédicatif fort pour le taux d'inflation actuel et peut être utilisé comme un taux de référence qui est utile pour évaluer les propriétés d'autres mesures de l'inflation sous-jacentes pour les États-Unis. Les mêmes résultats sont obtenus dans le cas de l'Italie et de la Grande-Bretagne. Durai et Ramachandran (2007) dans leurs applications de ce modèle sur les données de l’Inde ont prouvé une fois de plus que l'inflation sous-jacente dérivée d'un modèle à tendances communes semble être un très bon prédicteur de l'inflation future.

Dans la section suivante, nous résumons la méthodologie économétrique utilisée pour identifier et estimer un modèle à tendances communes.

3.2 Méthodologie économétrique

Méthodologie économétrique pour identifier et estimer un modèle à tendances communes :

Passage de la forme VAR à la forme à tendances communes du modèle

Considérons \(x_t = (x_{1,t} \ldots x_{n,t})' \) - un vecteur de dimension n de variables aléatoires intégrées d’ordre 1 \(x_{i,t} \sim i(1) \forall i = 1 \ldots n \). Supposons qu’il existe \(0 < r < n \) relations cointégrées entre les variables de \(x_t \), la représentation du système VAR cointégré pour \(x_t \) est alors la suivante :

\[
\pi_t^* = \pi_0 + \hat{\gamma}_{41} \tau_{f,t} + \hat{\gamma}_{42} \tau_{r,t} + \hat{\gamma}_{43} \tau_{n,t}
\] (3.26)
Chapitre 3: Les approches économétriques

\[
\Delta x_t = \Pi(L)\Delta x_{t-1} + \alpha \beta' x_{t-1} + \varepsilon_t \tag{3.27}
\]

Où \(\Pi(L) = \Pi_1 + \Pi_2 L + \cdots + \Pi_p L^{p-1} \) est un polynôme d'opérateurs retard ; \(\alpha \) est la matrice \((n \times r)\) des vitesses d’ajustement, et \(\beta \) est la matrice \((n \times r)\) contenant les \(r \) vecteurs de cointégration, de sorte que \(\beta' x_t \) représente les combinaisons linéaires stationnaires des variables. \(\varepsilon_t \) est un vecteur d’aléas i.i.d.

L’écriture du système VAR cointégré peut être réécrite sous la forme de la représentation de Wold multivariée:

\[
\Delta x_t = C(L)\varepsilon_t \tag{3.28}
\]

Où, \(C(L) \) est une matrice de polynômes de dimension \((n \times n)\) telle que

\[
C(L) = I + C_1 L + C_2 L + \cdots \text{avec } \sum_{j=0}^{\infty} |C_j| < \infty
\]

En appliquant la décomposition cycle-tendance selon les principes de Beveridge et Nelson(1981) au cas multivarié, on obtient ensuite :

\[
\Delta x_t = x_0 + C(1) \sum_{j=0}^{t-1} \varepsilon_{t-j} + C^*(L)\varepsilon_t \tag{3.29}
\]

où

\[
C^*(L) = \sum_{j=0}^{\infty} C_j^* L^j \text{ avec } C_j^* = -\sum_{i=i+1}^{\infty} C_i.
\]

\(C(1) \) capture l'effet à long terme des perturbations de la forme réduite \(\varepsilon_t \) sur les variables \(x_t \).

Les perturbations de la forme réduite \(\varepsilon_t \) sont ensuite transformées en un vecteur de chocs sous-jacents structurels \(\varphi_t \). Certains des éléments de \(\varphi_t \) ont des effets permanents sur \(x_t \) et certains n'ont que des effets transitoires. Ainsi, \(\varphi_t \) peut être décomposé selon \(\varphi_t \equiv (\psi_t, \nu_t)' \) avec \(\psi_t \) et \(\nu_t \) sont respectivement
les vecteurs de k et r éléments, $k = n - r$. La forme structurelle des différences premières des éléments de x_t peut ensuite être réécrite selon :

$$\Delta x_t = \Gamma(L)\varphi_t$$ \hspace{1cm} (3.30)

Avec $\Gamma(L) = \Gamma_0 + \Gamma_1L + \Gamma_2L^2 + \cdots$

Notons que le premier terme de $C(L)$ dans l’équation $\Delta x_t = C(L)\varepsilon_t$ est une matrice identité I et que celui de $\Gamma(L)$ dans $\Gamma(L) = \Gamma_0 + \Gamma_1L + \Gamma_2L^2 + \cdots$ est Γ_0. En comparant ces deux termes, on peut définir les erreurs de la forme réduite en termes d’innovations structurelles comme suit :

$$\varepsilon_t = \Gamma_0\varphi_t$$ \hspace{1cm} (3.31)

La comparaison entre les équations $\Delta x_t = C(L)\varepsilon_t$ et $\Delta x_t = \Gamma(L)\varphi_t$ montre ensuite que :

$$C(L)\Gamma_0 = \Gamma(L)$$ \hspace{1cm} (3.32)

Cette égalité implique que $C_i\Gamma_0 = \Gamma_i$ ($\forall i > 0$) et $C(1)\Gamma_0 = \Gamma(1)$.

Pour identifier les éléments de φ qui correspondent à des chocs permanents ψ_t et les éléments de φ qui sont des perturbations transitoires du système ν_t, il est nécessaire d’imposer les contraintes suivantes dans la matrice de long terme $\Gamma(1)$:

$$\Gamma(1) = (\Gamma_g, 0)$$ \hspace{1cm} (3.33)

Où Γ_g est une matrice de dimensions $n \times k$. Les innovations de ψ_t permettent d’avoir les effets à long terme sur les variables de x_t, tandis que les chocs ν_t n’ont que des effets transitoires.

Au final, le système VAR cointégrée $\Delta x_t = C(L)\varepsilon_t$ peut être converti sous la forme suivante :
\[x_t = x_0 + \Gamma(1) \sum_{j=0}^{t-1} \varphi_{t-j} + \Gamma^*(L) \varphi_t \]
\[= x_0 + \Gamma_g \sum_{j=0}^{t-1} \psi_{t-j} + \Gamma^*(L) \varphi_t \]

Où \(x_0 \) est le vecteur des valeurs initiales du vecteur \(x_t \).

La partie qui contient des informations de long terme du système \(\sum_{j=0}^{t-1} \psi_{t-j} \) est enfin exprimée comme \(k \) vecteurs de marche aléatoire \(\tau \) avec les innovations \(\psi_t \) :

\[\tau_t = \tau_{t-1} + \psi_t = \tau_0 + \sum_{j=0}^{t-1} \psi_{t-j} \]
\[(3.35) \]

On obtient ainsi la représentation suivante de la tendance commune pour \(x_t \) :

\[x_t = x_0 + \Gamma_g \tau_t + \Gamma^*(L) \begin{bmatrix} \psi_t \\ \nu_t \end{bmatrix} \]
\[(3.36) \]

Cette écriture montre que l’existence de \(r \) relations de cointégration stationnaire des éléments non stationnaires de \(x_t \) peut être interprétée comme le fait que les dynamiques non stationnaires des éléments de \(x_t \) sont générées par l’existence de \(k = n - r \) chocs ayant des effets permanents sur ces éléments. Cette permanence des effets est due au fait que ces chocs s’accumulent à partir de \(k \) marches aléatoires regroupées dans le vecteur \(\tau_t \) par l’intermédiaire de la matrice \(\Gamma_g \). À côté de cela, il existe \(r \) chocs ayant uniquement des effets temporaires sur les éléments de \(x_t \). Ces chocs sont regroupés dans le vecteur \(\nu_t \).

Une fois que la matrice \(\Gamma_g \) est estimée, la prévision à long terme de \(x_t \) est générée comme suit :

\[\lim_{h \to \infty} E_t x_{t+h} = x_0 + \Gamma_g \tau_t. \]
\[(3.37) \]
Cette composante de x_t est conditionnée par les chocs permanents du système et exprime donc les mouvements sous-jacents de ces variables.

Identification de Γ_g

L’identification des $n \times k$ éléments de la matrice Γ_g peut être réalisée simplement en trois étapes.

Étape 1

L’existence de relations de cointégration signifie que la matrice Γ_g doit vérifier :

$$\beta' \Gamma_g = 0_{r \times k} \quad \text{pour s’assurer que } \beta' x_t \sim I(0)$$

Étant donné que les vecteurs de cointégration ont été estimés dans la phrase d’analyse des relations de cointégration du modèle, l’équation matricielle $\beta' \Gamma_g = 0_{r \times k}$ fournit donc $r \times k$ contraintes permettant d’identifier $r \times k$ éléments de la matrice Γ_g.

Étape 2

Étant donné que les processus $\varepsilon_t, \psi_t, v_t$ sont des bruits blancs, la réponse de x_{t+h} à ε_t doit être identique à la réponse de x_{t+h} à (ψ_t, v_t), il vient donc

$$[C(1) + C_h^r] \varepsilon_t = \{[\Gamma_g \quad 0] + \Lambda_h\} \begin{bmatrix} \psi_t \\ v_t \end{bmatrix}$$ (3.38)

Cette équation matricielle doit être vérifiée pour tout $h=1,2,\ldots$.

48 La méthode proposée par Johansen et Juselius qui est basée sur des techniques du maximum de vraisemblance, permet de déterminer les matrice α, β' et $\Pi(L)$ du modèle VAR structurel cointégré.
Dans le cas où \(h \to \infty \) cette matricielle se ramène à :

\[
C(1)\varepsilon_t = \Gamma_g \psi_t
\]
(3.39)

En prenant la variance des termes de droite et de gauche, on a encore

\[
E(\Gamma_g \psi_t \psi_t' \Gamma_g') = E(C(1)\varepsilon_t \varepsilon_t'C(1)')
\]
(3.40)

De là, on en déduit :

\[
\Gamma_g E(\psi_t \psi_t') \Gamma_g' = C(1)E(\varepsilon_t \varepsilon_t')C(1)'
\]
(3.41)

Soit encore puisque \(\text{var}(\psi_t) = I_k \)

\[
\Gamma_g \Gamma_g' = C(1)\Omega C(1)'
\]
(3.42)

Cette égalité matricielle définit \(k(k+1)/2 \) contraintes supplémentaires sur la matrice \(\Gamma_g \).

Étape 3

La matrice \(\Gamma_g \) de dimension \(n \times k \) contient \((nk) \) éléments. Étant donné le nombre de contraintes identifiantes déjà mises en évidence, la matrice \(\Gamma_g \) sera totalement identifiée si nous déterminons un nombre de contraintes supplémentaires égal à :

\[
k - \frac{rk}{2} - \frac{k(k+1)}{2} = \frac{k(k-1)}{2}
\]
(3.43)

Comme dans le cas des modélisations SVAR, pour ces \(\frac{k(k-1)}{2} \) contraintes additionnelles sur la matrice \(\Gamma_g \), on peut notamment imposer des contraintes de nature théorique mais qui ne peuvent pas être testées. Par exemple, en supposant que les chocs monétaires n’ont pas d’effets à long terme sur les grandeurs réelles de l’économie, cela revient à imposer la nullité de
certains éléments de la matrice Γ_g. En incorporant $\frac{k(k-1)}{2}$ dernières contraintes sur les éléments de Γ_g, la matrice Γ_g devient juste identifiée. Notons que les contraintes théoriques doivent être cohérentes avec les propriétés de cointégration et qu’elles doivent être le moins arbitraire possible puisque l’estimation du modèle leur est conditionnelle.

3.3 Estimation et discussion

Bien que les modèles à tendances communes de Bagliano et Morana appliqué aux données des États-Unis et de la Grande-Bretagne, aient bien démontré leur capacité à estimer l’inflation sous-jacente, nous ne pouvons pas les réappliquer à l’identique dans le cas du Vietnam. Comme nous l’avons précisé plus haut dans le cas du Vietnam, les variables qui représentent l’offre de monnaie (par exemple M2, offre de crédit…) sont faiblement corrélées avec l’inflation. Par conséquent leur incorporation à la modélisation ne devrait pas apporter un supplément d’information important pour modéliser le processus de l’inflation. Ces variables sont donc éliminées du modèle initial. La base de données sur le chômage et les salaires du Vietnam est encore limitée et manque de synchronisation avec les autres variables. En conséquence, bien que ces variables soient des variables potentielles, nous ne pouvons pas en tenir compte dans le modèle.

Dans notre cas, nous considérons donc uniquement un vecteur de trois variables endogènes $x_t = (oil_t, y_t, \pi_t)$, où : oil_t est le prix du pétrole en dollars américains ; y_t est le logarithme du volume de la production industrielle et π_t est le taux d’inflation annuel.

Les tests de Dickey Fuller Augmenté montrent que ces trois séries sont bien intégrées de même d’ordre 1. Les résultats sont reportés dans le tableau 20.
Chapitre 3: Les approches économétriques

Tableau 20: TESTS DE DICKEY FULLER AUGMENTÉS

<table>
<thead>
<tr>
<th>H0: INF est non stationnaire</th>
<th>Statistique T</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-0.406662</td>
<td>0.5359</td>
</tr>
<tr>
<td>1%</td>
<td>-2.577454</td>
<td></td>
</tr>
<tr>
<td>5%</td>
<td>-1.942545</td>
<td></td>
</tr>
<tr>
<td>10%</td>
<td>-1.615565</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>H0: LOIL est non stationnaire</th>
<th>Statistique T</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-0.837894</td>
<td>0.8057</td>
</tr>
<tr>
<td>1%</td>
<td>-3.463405</td>
<td></td>
</tr>
<tr>
<td>5%</td>
<td>-2.875972</td>
<td></td>
</tr>
<tr>
<td>10%</td>
<td>-2.574541</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>H0: LPI est non stationnaire au niveau 1</th>
<th>Statistique T</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-0.406662</td>
<td>0.1279</td>
</tr>
<tr>
<td>1%</td>
<td>-3.465585</td>
<td></td>
</tr>
<tr>
<td>5%</td>
<td>-2.876827</td>
<td></td>
</tr>
<tr>
<td>10%</td>
<td>-2.575021</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>H0: INF est non stationnaire en première différence</th>
<th>Statistique T</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-3.802418</td>
<td>0.0002</td>
</tr>
<tr>
<td>1%</td>
<td>-2.577590</td>
<td></td>
</tr>
<tr>
<td>5%</td>
<td>-1.942564</td>
<td></td>
</tr>
<tr>
<td>10%</td>
<td>-1.615555</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>H0: LOIL est non stationnaire en première différence</th>
<th>Statistique T</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-4.773672</td>
<td>0.0001</td>
</tr>
<tr>
<td>1%</td>
<td>-3.465585</td>
<td></td>
</tr>
<tr>
<td>5%</td>
<td>-2.876927</td>
<td></td>
</tr>
<tr>
<td>10%</td>
<td>-2.575021</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>H0: LPI est non stationnaire en première différence</th>
<th>Statistique T</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-5.176114</td>
<td>0.0000</td>
</tr>
<tr>
<td>1%</td>
<td>-3.465585</td>
<td></td>
</tr>
<tr>
<td>5%</td>
<td>-2.876927</td>
<td></td>
</tr>
<tr>
<td>10%</td>
<td>-2.5750513</td>
<td></td>
</tr>
</tbody>
</table>

Analyse de cointégration

L'idée d'une analyse de cointégration est assez simple : bien que chaque variable macroéconomique puisse avoir une tendance stochastique, certaines de ces variables ont toujours la possibilité d'évoluer conjointement car elles possèdent des tendances communes. S'il existe des tendances communes parmi l'ensemble des variables l'analyse de cointégration peut permettre de les détecter. La combinaison linéaire stationnaire entre l'ensemble de ces variables est appelée équation de cointégration et peut être interprétée comme une relation d'équilibre à long terme entre ces variables. La procédure de
cointégration suivie dans le présent document est l'approche de Johansen et Juselius (1990). Les résultats sont reportés dans le tableau 21. La statistique de la Trace permet de rejeter l’hypothèse nulle que le nombre de relation est égal à 0 au seuil de 5%. Par contre, cette statistique ne permet pas de rejeter l’hypothèse nulle qu’il existe une relation de cointégration au seuil de 5%. Nous retenons donc l’hypothèse nulle r=1.

Tableau 21: TEST DE LA TRACE SUR L’EXISTENCE ET LE NOMBRE DE RELATIONS DE COINTÉGRATION

<table>
<thead>
<tr>
<th>r</th>
<th>Valeur propre</th>
<th>Trace*</th>
<th>Frac95</th>
<th>P.value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.113</td>
<td>33.685</td>
<td>24.214</td>
<td>0.002</td>
</tr>
<tr>
<td>1</td>
<td>0.051</td>
<td>10.849</td>
<td>12.282</td>
<td>0.087</td>
</tr>
<tr>
<td>2</td>
<td>0.001</td>
<td>0.220</td>
<td>4.071</td>
<td>0.711</td>
</tr>
</tbody>
</table>

Le fait qu’il existe un vecteur de cointégration dans le système signifie que ce système peut être mis sous la forme d’un modèle à tendances commune. L’existence d’une relation de cointégration implique également que ce système de 3 variables contient 3 – 1 = 2 tendances communes aux variables.

Dans le but d’étudier précisément la spécification de cette relation de cointégration, on procède à des tests d’exclusion et d’exogénéité faible pour ces trois variables. Ces deux tests permettent de préciser le rôle de chaque variable dans le système. Notons que dans un système, il y a des variables qui ne sont pas influencées par les autres tandis qu’elles ont des effets significatifs sur les autres variables. De telles variables ne s’ajustent pas dans le cadre de la relation de long terme, elles sont faiblement exogènes. La somme cumulée des chocs stochastiques sur ces variables serait alors complètement définie par les tendances autonomes, qui conduisent la tendance stochastique à long terme des autres variables du système. Elles peuvent donc être considérées comme la tendance commune du système. Ici, nous espérons trouver 2 variables faiblement exogènes. Le test d’exogénéité faible est un ratio de vraisemblance
Chapitre 3: Les approches économétriques

qui permet de tester l’hypothèse nulle d’exogénéité faible contre l’hypothèse alternative de non exogénéité. Les résultats sont présentés dans le tableau 22. L’hypothèse nulle d’exogénéité est non rejetée au seuil de 5% pour les variables « prix du pétrole » et « production » avec des P-values largement supérieures au seuil critique de 5% ou de 10%. Ces deux variables peuvent être considérées comme faiblement exogènes. Quant aux tests d’exclusion, ils montrent qu’aucune variable dans le système n’est exclue de la relation de cointégration car les P-values sont nettement inférieure au seuil de 5%.

Tableau 22: TEST D’EXOGÉNEITÉ ET TEST D’EXCLUSION

<table>
<thead>
<tr>
<th>Test</th>
<th>LOIL</th>
<th>LPI</th>
<th>INF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test d’exogénéité</td>
<td>0.001</td>
<td>1.041</td>
<td>12.557</td>
</tr>
<tr>
<td></td>
<td>(0.974)</td>
<td>(0.308)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>Test d’exclusion</td>
<td>8.443</td>
<td>5.734</td>
<td>13.030</td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
<td>(0.017)</td>
<td>(0.000)</td>
</tr>
</tbody>
</table>

Après l’estimation, la relation de long terme entre les trois variables est donnée par :

\[\pi_t = 7.391oil_t - 2.024y_t + \varepsilon_{\pi,t} \quad (3.44) \]

L’équation de cointégration est normalisée de façon à réécrire l’inflation en fonction des autres variables. Ce choix est ici basé sur le fait que l’objectif de la modélisation est d’évaluer l’inflation sous-jacente. Bien entendu, d’autres choix sont envisageables. L’inflation est donc considérée comme une variable endogène dont les mouvements de long terme sont expliqués par les chocs accumulés par l’évolution du prix du pétrole mondiale et par le volume de production dans l’économie. À long terme, l’augmentation de la production va de pair avec une réduction de l’inflation. Cette relation de long terme peut donc représenter l’effet de long terme du progrès technologie qui fait augmenter l’offre et diminuer les prix. Quant au prix du pétrole, variable qui affecte directement et indirectement le coût de production dans l’économie, elle
Chapitre 3: Les approches économétriques

Estimation du modèle à tendance commune

L’analyse de cointégration précédente implique la présence de deux sources de chocs qui donnent des effets permanents sur le système : le choc sur le prix mondial du pétrole et le choc sur la production de l’économie vietnamienne. On peut faire les hypothèses suivantes sur la nature de ces chocs. Le choc sur le prix mondial du pétrole représente un choc d’offre étranger ψ_f alors que le choc sur la production représente un choc d’offre domestique ψ_o. Le modèle à tendances communes s’écrit alors

$$
\begin{bmatrix}
 o l_t \\
 y_t \\
 \pi_t
\end{bmatrix} = \begin{bmatrix}
 o l_0 \\
 y_0 \\
 \pi_0
\end{bmatrix} + \begin{bmatrix}
 \gamma_{11} & \gamma_{12} \\
 \gamma_{21} & \gamma_{22} \\
 \gamma_{31} & \gamma_{32}
\end{bmatrix} \begin{bmatrix}
 \tau_{f,t} \\
 \tau_{o,t}
\end{bmatrix} + \Gamma^* (L) \begin{bmatrix}
 \psi_{f,t} \\
 \psi_{o,t} \\
 v_t
\end{bmatrix}
$$

(3.45)

Et les composantes permanentes sont dans ce cas:

$$
\begin{bmatrix}
 \tau_{f,t} \\
 \tau_{o,t}
\end{bmatrix} = \begin{bmatrix}
 \mu_f \\
 \mu_o
\end{bmatrix} + \begin{bmatrix}
 \tau_{f,t-1} \\
 \tau_{o,t-1}
\end{bmatrix} + \begin{bmatrix}
 \psi_{f,t} \\
 \psi_{o,t}
\end{bmatrix}
$$

(3.46)

Comme l’économie vietnamienne n’a pas d’influence sur le marché mondial de l’énergie, les chocs domestiques ne donnent aucun effet à long terme sur le prix du pétrole. Précisément, le prix du pétrole mondial est

49 Notons que le choix d’un système de 3 variables ne permet pas d’identifier tous les chocs dans l’économie qui permettent d’expliquer l’évolution de l’inflation. Nous reconnaissons ce problème comme une des limites de cette étude. Dans la perspective de prolonger cette recherche, nous avons l’intention de chercher d’autres variables pour étendre le modèle actuel. De ce fait, nous pourrons raffiner la modélisation des mécanismes de détermination de l’inflation à long terme du Vietnam.
Chapitre 3: Les approches économétriques

complètement indépendant des chocs domestiques. Cette hypothèse est considérée une contrainte libre dans le système, correspondant à $\gamma_{12} = 0$.

Le modèle étant maintenant identifié, il peut être estimé. Les estimations sont reportées dans le tableau 23 suivant (les tests de significativité sont indiqués entre parenthèses sous chaque coefficient):

Tableau 23: MATRICE DES IMPACTS À LONG TERME – ESTIMÉE DU MODÈLE À TENDANCES COMMUNES

<table>
<thead>
<tr>
<th>Test</th>
<th>LOIL</th>
<th>LPI</th>
<th>INF</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOIL</td>
<td>1.219</td>
<td>-0.006</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>(7.629)</td>
<td>(-0.051)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>LPI</td>
<td>0.108</td>
<td>0.618</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>(1.498)</td>
<td>(10.850)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>INF</td>
<td>8.794</td>
<td>-1.298</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>(7.623)</td>
<td>(-1.430)</td>
<td>(0.000)</td>
</tr>
</tbody>
</table>

Les résultats empiriques suggèrent les commentaires suivants.

À partir du modèle estimée, certaines remarques doivent être faites concernant les points suivants.

Premièrement, les chocs cumulés du prix du pétrole ont un effet significatif sur le prix du pétrole et sur l'inflation. Les chocs cumulés de la production n'ont que des effets sur la production. Leurs effets négatifs sur l'inflation sont faiblement significatifs. Le fait que les effets des chocs cumulés de la production ne soient pas complètement significatifs nous aide à confirmer que la contrainte imposée dans le système est raisonnable et conforme aux propriétés des données50.

50 La contrainte selon laquelle le prix du pétrole est bien indépendant du choc domestique.
La décomposition de la variance de l’erreur de prévision du système donne un aperçu supplémentaire du comportement à long terme des variables. Plus de 98% des variabilités du prix mondial du pétrole sont expliqués par les chocs étrangers de court terme et de long terme. La production potentielle de l’économie est presque indépendante du choc de demande, ce qui coïncide bien avec l’hypothèse d’une courbe d’offre globale verticale à long terme. À long terme, la variance de l’inflation est fortement influencée par la fluctuation du prix mondial du pétrole. La variation de celui-ci contribue environ de 60% à la variabilité à long terme de l’inflation ; les chocs de demande domestique expliquent 39% de celle-ci. Les résultats sont reportés dans les tableaux de décomposition de la variance de l’erreur de prévision ci-dessous (Tableau 24, 25 et 26).

Tableau 24: DÉCOMPOSITION DE LA VARIANCE DE LA SÉRIE DE PRIX DU PÉTROLE

<table>
<thead>
<tr>
<th>Étape</th>
<th>Erreur standard</th>
<th>Chocs d’offre étrangère</th>
<th>Chocs d’offre domestique</th>
<th>Chocs de demande domestique</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0852</td>
<td>100.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>2</td>
<td>0.1297</td>
<td>99.590</td>
<td>0.005</td>
<td>0.405</td>
</tr>
<tr>
<td>3</td>
<td>0.1639</td>
<td>99.469</td>
<td>0.003</td>
<td>0.528</td>
</tr>
<tr>
<td>4</td>
<td>0.1957</td>
<td>99.580</td>
<td>0.049</td>
<td>0.371</td>
</tr>
<tr>
<td>5</td>
<td>0.2236</td>
<td>99.616</td>
<td>0.056</td>
<td>0.327</td>
</tr>
<tr>
<td>10</td>
<td>0.3282</td>
<td>98.541</td>
<td>0.028</td>
<td>1.431</td>
</tr>
<tr>
<td>20</td>
<td>0.4630</td>
<td>97.256</td>
<td>0.017</td>
<td>2.727</td>
</tr>
<tr>
<td>30</td>
<td>0.5640</td>
<td>97.989</td>
<td>0.022</td>
<td>1.988</td>
</tr>
<tr>
<td>40</td>
<td>0.6522</td>
<td>98.406</td>
<td>0.026</td>
<td>1.568</td>
</tr>
<tr>
<td>50</td>
<td>0.7294</td>
<td>98.548</td>
<td>0.024</td>
<td>1.428</td>
</tr>
<tr>
<td>60</td>
<td>0.7987</td>
<td>98.666</td>
<td>0.024</td>
<td>1.311</td>
</tr>
<tr>
<td>70</td>
<td>0.8626</td>
<td>98.768</td>
<td>0.024</td>
<td>1.208</td>
</tr>
<tr>
<td>80</td>
<td>0.9222</td>
<td>98.837</td>
<td>0.023</td>
<td>1.139</td>
</tr>
<tr>
<td>90</td>
<td>0.9781</td>
<td>98.889</td>
<td>0.023</td>
<td>1.088</td>
</tr>
<tr>
<td>100</td>
<td>1.0309</td>
<td>98.933</td>
<td>0.023</td>
<td>1.044</td>
</tr>
</tbody>
</table>
Tableau 25: DÉCOMPOSITION DE LA VARIANCE DE LA SÉRIE DE PRODUCTION

<table>
<thead>
<tr>
<th>Étape</th>
<th>Erreur standard</th>
<th>Chocs d'offre étrangère</th>
<th>Chocs d'offre domestique</th>
<th>Chocs de demande domestique</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0601</td>
<td>0.540</td>
<td>99.460</td>
<td>0.000</td>
</tr>
<tr>
<td>2</td>
<td>0.0759</td>
<td>2.073</td>
<td>97.894</td>
<td>0.033</td>
</tr>
<tr>
<td>3</td>
<td>0.0839</td>
<td>1.952</td>
<td>97.654</td>
<td>0.394</td>
</tr>
<tr>
<td>4</td>
<td>0.0915</td>
<td>1.830</td>
<td>97.773</td>
<td>0.398</td>
</tr>
<tr>
<td>5</td>
<td>0.0996</td>
<td>1.829</td>
<td>97.814</td>
<td>0.357</td>
</tr>
<tr>
<td>10</td>
<td>0.1325</td>
<td>1.690</td>
<td>98.057</td>
<td>0.254</td>
</tr>
<tr>
<td>20</td>
<td>0.1823</td>
<td>1.633</td>
<td>98.100</td>
<td>0.267</td>
</tr>
<tr>
<td>30</td>
<td>0.2216</td>
<td>1.722</td>
<td>97.953</td>
<td>0.324</td>
</tr>
<tr>
<td>40</td>
<td>0.2546</td>
<td>1.757</td>
<td>97.961</td>
<td>0.282</td>
</tr>
<tr>
<td>50</td>
<td>0.2837</td>
<td>1.762</td>
<td>97.979</td>
<td>0.260</td>
</tr>
<tr>
<td>60</td>
<td>0.3102</td>
<td>1.771</td>
<td>97.975</td>
<td>0.254</td>
</tr>
<tr>
<td>70</td>
<td>0.3345</td>
<td>1.779</td>
<td>97.974</td>
<td>0.247</td>
</tr>
<tr>
<td>80</td>
<td>0.3572</td>
<td>1.784</td>
<td>97.976</td>
<td>0.240</td>
</tr>
<tr>
<td>90</td>
<td>0.3786</td>
<td>1.787</td>
<td>97.977</td>
<td>0.236</td>
</tr>
<tr>
<td>100</td>
<td>0.3988</td>
<td>1.791</td>
<td>97.977</td>
<td>0.233</td>
</tr>
</tbody>
</table>

Tableau 26: DÉCOMPOSITION DE LA VARIANCE DE LA SÉRIE D’INFLATION

<table>
<thead>
<tr>
<th>Étape</th>
<th>Erreur standard</th>
<th>Chocs d'offre étrangère</th>
<th>Chocs d'offre domestique</th>
<th>Chocs de demande domestique</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.7371</td>
<td>2.590</td>
<td>0.297</td>
<td>97.112</td>
</tr>
<tr>
<td>2</td>
<td>1.3637</td>
<td>5.162</td>
<td>0.374</td>
<td>94.464</td>
</tr>
<tr>
<td>3</td>
<td>1.9292</td>
<td>6.648</td>
<td>1.074</td>
<td>92.278</td>
</tr>
<tr>
<td>4</td>
<td>2.5034</td>
<td>7.774</td>
<td>1.345</td>
<td>90.881</td>
</tr>
<tr>
<td>5</td>
<td>3.0442</td>
<td>9.032</td>
<td>1.416</td>
<td>89.553</td>
</tr>
<tr>
<td>10</td>
<td>4.8747</td>
<td>17.003</td>
<td>1.472</td>
<td>81.525</td>
</tr>
<tr>
<td>20</td>
<td>5.8140</td>
<td>32.986</td>
<td>1.248</td>
<td>65.766</td>
</tr>
<tr>
<td>30</td>
<td>6.3169</td>
<td>36.404</td>
<td>1.455</td>
<td>62.141</td>
</tr>
<tr>
<td>40</td>
<td>6.5913</td>
<td>41.246</td>
<td>1.389</td>
<td>57.365</td>
</tr>
<tr>
<td>50</td>
<td>6.9098</td>
<td>46.402</td>
<td>1.287</td>
<td>52.511</td>
</tr>
<tr>
<td>60</td>
<td>7.2017</td>
<td>50.412</td>
<td>1.249</td>
<td>48.339</td>
</tr>
<tr>
<td>70</td>
<td>7.4680</td>
<td>53.737</td>
<td>1.213</td>
<td>45.050</td>
</tr>
<tr>
<td>80</td>
<td>7.7292</td>
<td>56.747</td>
<td>1.171</td>
<td>42.082</td>
</tr>
<tr>
<td>90</td>
<td>7.9839</td>
<td>59.377</td>
<td>1.137</td>
<td>39.486</td>
</tr>
<tr>
<td>100</td>
<td>8.2290</td>
<td>61.672</td>
<td>1.110</td>
<td>37.219</td>
</tr>
</tbody>
</table>
Après une année, la variance de l’inflation est expliquée à hauteur de 20% par les chocs sur le prix mondial de l’énergie et à 80% par les chocs de demande intérieure. Par contre, sur un horizon de 5 ans (60 mois), chacun des deux chocs explique presque 50% de la variabilité de l’inflation.

La composante permanente de l’inflation est positivement influencée par le choc des prix du pétrole et négativement influencée par le choc d’offre domestique. L’inflation sous-jacente selon cette approche est alors calculée à travers l’équation suivante :

\[
\pi_t^* = \pi_0 + 8.794 \times \tau_{f,t} - 1.289 \times \tau_{o,t} \quad (3.47)
\]

Dans cette équation, toutes les fluctuations transitoires du taux d’inflation observé sont éliminées. Cette mesure de l’inflation ne capture que les effets à long terme des chocs dans le système. La série d’inflation sous-jacente et d’inflation transitoire sont présentées dans les graphiques 28 et 29 suivantes.

Figure 28: INDICE D’INFLATION SOUS-JACENTE MESURÉ AVEC LE MODÈLE À TENDANCES COMMUNES
Comme nous en avons discuté à la fin de la section précédente, notre intérêt pour ce modèle dépend de sa capacité éventuellement à fournir un indice d’inflation sous-jacente pur pour le cas du Vietnam. Or les graphiques précédents semblent montrer que ce n’est pas le cas. En effet, l’inflation transitoire – la différence entre l’inflation observée et l’inflation sous-jacente estimée, n’est pas stationnaire autour de valeur de 0 et présente une tendance à la baisse à partir de 2003. L’inflation observée semble donc se décaler durablement de son niveau d’équilibre de long terme (l’inflation sous-jacente). Ce résultat peut suggérer que la série d’inflation sous-jacente n’est pas parfaitement estimée et qu’un certain pourcentage de l’inflation transitoire est encore présent dans l’inflation sous-jacente. Ce modèle a donc tendance à surestimer l’inflation sous-jacente à partir de 2003 pour le Vietnam.

Du fait de ce biais dans l’inflation sous-jacente, nous proposons dans la suite de l’analyse de chercher un modèle alternatif qui permette de fournir une estimation alternative de l’inflation sous-jacente mais ne possédant pas ce défaut.
4. Le modèle à composantes non observées

« The short-run Phillips curve in form of an unobserved components model offers a straightforward way to capture a changing underlying level in inflation which is defined as core inflation and the inflation gap is now explained by the output gap”

Nous retenons dans cette partie une modélisation à composante non observable. Notre intérêt pour ce modèle vient du fait qu’il permet de décomposer l’inflation observée en une composante d’inflation sous-jacente et une composante d’inflation transitoire en se basant sur la relation à court terme qui existe entre l’inflation et la production. C’est ce point qui motive notre choix pour ce modèle dans cette étude. Comme la relation entre l’écart d’inflation et la production est établie de façon explicite dans ce modèle, ce modèle devrait permettre de mieux estimer l’inflation sous-jacente du Vietnam que les méthodes précédentes.

Le modèle SVAR avec contraintes de type Blanchard et Quad et le modèle à tendances communes comme nous en avons discuté précédemment sont uniquement identifiés à partir des relations macro-économiques de long terme. De plus, ces modèles ne permettent décomposer l’inflation observée qu’en deux composantes. Le modèle à composantes non observés dont permettre de dépasser ces limites.

4.1 Le courbe de Phillip et l’inflation sous-jacente

Avant d’entrer dans le détail de cette approche, nous présentons rapidement la théorie de la courbe de Phillips qui servira de support à la modélisation.

La courbe initiale de Phillips A. W. Phillips 1958
Les politiques macroéconomiques sont souvent destinées afin de permettre à l’économie de graviter autour de son niveau potentiel et avec un taux d’inflation bas. La courbe de Phillips est utilisée comme un outil qui sert à expliquer le compromis entre ces deux objectifs. Elle décrit la relation entre l’inflation et le chômage dans l’économie.

À court terme, cette courbe est une courbe stable à pente négative représentant le compromis implicite entre l’inflation et le chômage. Généralement, lorsque le chômage décroît, l’inflation s’accroît et vice versa. Cette relation négative est graphiquement bien exprimée dans cette version de la courbe de Phillips (voir figure 30).

Figure 30: COURBE DE PHILIPS – VERSION ORIGINALE

En cas de choc d’activité positif, le taux de chômage diminue car les firmes embauchent davantage. L’augmentation de la demande de travail et la réduction du taux de chômage entraînent des pressions en faveur d’une augmentation des salaires. Au fil du temps, avec la réduction du taux de chômage, les travailleurs peuvent négocier des niveaux de salaire plus élevés.

Dans le long terme, la relation entre la production et l’inflation est complètement différente. Au fil du temps, le chômage retourne à son niveau naturel (si le marché du travail possède un niveau de flexibilité suffisant) - le niveau auquel le PIB atteint son niveau de plein potentiel, sans chômage cyclique… et donc sans compromis entre l’inflation et le chômage. Cet ajustement est induit par la disparition progressive de l’illusion monétaire des salariés lorsque l’inflation perçue s’aligne sur l’inflation.

Le chômage est alors indépendant de l’inflation. Graphiquement, ce phénomène est montré par la courbe de Phillips verticale (sur le graphique 31).

Figure 31: COURBE DE PHILLIPS DE LONG TERME

![Courbe de Phillips de long terme](image)
Inflation, écart de production et la courbe de Philips

La relation entre l’inflation et l’écart de production peut donc être vue à travers la courbe de Phillips. À court terme, lorsque le taux de chômage est inférieur à son taux naturel (ou la production est supérieure à son niveau potentiel) l’inflation a tendance à augmenter. Dans le cas contraire, lorsque le taux de chômage est supérieur à son taux naturel (ou la production est inférieure de son niveau potentiel), l’inflation a tendance à diminuer. La courbe de Phillips peut donc être exprimée à partir de la relation entre l’écart de production et le taux d’inflation. L’écart de production est alors une mesure de l’excès de demande global ou de l’excès d’offre global.

La courbe Phillips est alors modélisée comme suit :

\[\pi_t = \beta x_t + \varepsilon_t \text{ avec } \varepsilon_t \sim NID(0, \sigma^2_\varepsilon) \]

(3.48)

Où \(x_t \) est l’écart de production.

Récemment, dans la version de la courbe Phillips proposée par les Nouveaux Keynesiens (NKPC), l’anticipation de l’inflation future est ajoutée au modèle qui s’écrit alors :

\[\pi_t = \gamma E(\pi_{t+1}) + \beta^* x_t + \varepsilon_t \text{ où } 0 \leq \gamma \leq 1 \]

(3.49)

Où \(E(\pi_{t+1}) \) représente l’anticipation rationnelle en \(t \) du taux d’inflation de la période \(t+1 \).

Dans ce cas, l’inflation dépend exclusivement de l’anticipation de la séquence à venir de l’écart de production. À titre d’exemple, si \(x_t \) est supposée être un processus stationnaire AR(1) avec un coefficient d’autoregression \(\phi \), la solution du modèle s’écrit :

\[\pi_t = \beta x_t + \varepsilon_t \quad \text{avec } \varepsilon_t \sim NID(0, \sigma^2_\varepsilon) \]

(3.50)
Chapitre 3: Les approches économétriques

avec

\[\beta = \frac{\beta^*}{1-\phi \gamma} \]

Plus généralement, si \(x_t \) est supposée être un AR(p) avec \(p \geq 2 \), la solution contendra \(p - 1 \) retards de \(x_t \) dans l’équation et permettra d’identifier \(\gamma \), (voir Nason et Smith (2008) et Pesaran (1987, propositions 6.1 et 6.2 pour le détail). En général, l’identification des paramètres est seulement possible lorsque \(p \) est plus grand que le nombre de retards dans l’équation originale.

Une version alternative de la Courbe de Phillips est donnée par la courbe de Phillips hybride keynesienne qui est écrite comme suit :

\[\pi_t = \alpha \pi_{t-1} + \gamma E_t(\pi_{t+1}) + \beta^* x_t + \varepsilon_t^* \] (3.51)

Harvey(2011) suggère qu’avec des hypothèses adaptées, un modèle d’inflation de ce type peut simultanément capturer les idées prospectives et rétrospectives de la courbe de Phillips hybride keynesienne (NKPC) à partir du retard de l’inflation \((\alpha \pi_{t-1}) \), de l’écart de production \((\beta^* x_t) \) et de l’anticipation de l’inflation \((\gamma E_t(\pi_{t+1})) \).

Inflation, inflation sous-jacente, écart de production et courbe de Phillips dans un modèle des composantes non-observables

Au lieu d’utiliser une variable de retard pour capturer l’inflation persistante, comme dans l’équation 3.51, Harvey(2011) propose d’incorporer au modèle une marche aléatoire non observée \(\mu_t \):

\[\pi_t = \mu_t + \beta x_t + \varepsilon_t \quad \text{et} \quad \varepsilon_t \sim NID(0, \sigma_{\varepsilon}^2) \] (3.52)

Avec \(\mu_t = \mu_{t-1} + \eta_t \quad \text{et} \quad \eta_t \sim NID(0, \sigma_{\eta}^2) \) (3.53)
Comme l’écart de production x_t est stationnaire, la prévision à long terme est donnée par la valeur espérée courante de μ_t qui constitue une mesure de l’inflation sous-jacente. L’écart d’inflation (inflation gap) est alors expliqué par l’écart de la production.

Le modèle $\pi_t = \mu_t + \beta x_t + \epsilon_t$, peut être encore enrichi en incluant un cycle stochastique ψ_t, un terme saisonnier γ_t, ainsi que des retards de x_t et certaines variables d’intervention (dummies $\lambda_t \omega_t$) afin de capturer les principales caractéristiques des données. Cette version du modèle s’écrit comme suit :

$$\pi_t = \mu_t + \psi_t + \gamma_t + \beta x_t + \lambda_t \omega_t + \epsilon_t$$

(3.54)

Dans cette configuration du modèle, la composante saisonnière γ_t possède la forme trigonométrique suivante:

$$\gamma_t = \sum_{j=1}^{s/2} \gamma_{j,t}$$

(3.55)

La longueur de la saisonnalité est égale à s ($s=4$ pour les données semestrielles ; $s=12$ pour les données mensuelles);

D’autre part, chaque $\gamma_{j,t}$ est modélisé selon:

$$\begin{bmatrix} \gamma_{j,t} \\ \gamma_{j,t}^{*} \end{bmatrix} = \begin{bmatrix} \cos \lambda_j & \sin \lambda_j \\ -\sin \lambda_j & \cos \lambda_j \end{bmatrix} \begin{bmatrix} \gamma_{j,t-1} \\ \gamma_{j,t-1}^{*} \end{bmatrix} + \begin{bmatrix} k_{j,t} \\ k_{j,t}^{*} \end{bmatrix}$$

et $j = 1, \ldots, \frac{s}{2}$

(3.56)

$\lambda_j = 2\pi j/s$ est la fréquence saisonnière en radians, et $k_t, k_t^{*} \sim NID$ sont les perturbations saisonnières avec des moyennes nulles et des variances égales à σ_k^2.

La spécification statistique du cycle, ψ_t est finalement donnée par:

$$\begin{bmatrix} \psi_t \\ \psi_{t}^{*} \end{bmatrix} = \rho \begin{bmatrix} \cos \lambda_j & \sin \lambda_j \\ -\sin \lambda_j & \cos \lambda_j \end{bmatrix} \begin{bmatrix} \psi_{t-1} \\ \psi_{t-1}^{*} \end{bmatrix} + \begin{bmatrix} \zeta_t \\ \zeta_{t}^{*} \end{bmatrix}$$

(3.57)
Où ρ_ψ (se situent dans une fourchette de 0 à 1: $0 \leq \rho_\psi \leq 1$) est un facteur d'amortissement et $\zeta_t, \zeta_t^* \sim NID$ sont des perturbations de moyenne nulle et avec une variance commune σ_ξ^2.

Cette courbe de Phillips mise sous la forme d’un modèle à composantes non observées, fournit un moyen direct pour capturer le changement du niveau fondamental de l’inflation $(\mu_t + \psi_t)$ qui est défini comme l’inflation sous-jacente. L’écart d’inflation (inflation gap) est pour sa part expliqué par l’écart de production.

Au cours des deux dernières années, ce modèle est devenu un thème de recherche attractif. De nombreuses études ont cherché à appliquer ou à étendre ce modèle. Machado et Portugal (2014) propose de passer d’un modèle sans anticipation d’inflation, comme celui proposé par Harvey (2011), à un modèle avec anticipations, pour les données du Brésil. La forme générale de leur modèle est :

$$\pi_t = \mu_t + \gamma_t + \beta x_t + \gamma E_t(\pi_{t+1}) + \lambda_t \omega_t + \varepsilon_t$$ \hspace{1cm} (3.58)

Les résultats obtenus montrent une amélioration de l’adéquation du modèle : les coefficients de l’inflation anticipée affichent un niveau élevé de significativité et sont proches de 1.

Paradiso et Rao (2012) ont pour leur part estimé la courbe de Phillips pour les États-Unis et l’Australie en étendant le modèle à la prise en compte du prix du pétrole, et en tenant compte d’une composante cyclique. La forme générale de leur modèle est :

$$\pi_t = \mu_t + \gamma_t + \psi_t + \beta_1 x_t + \lambda_t \omega_t + \beta_2 oil_t + \varepsilon_t$$ \hspace{1cm} (3.59)

 oil$_t$ est la composante cyclique du prix du pétrole et est obtenue grâce à une décomposition univariée de type tendance-cycle. Le prix du pétrole est inclus dans cette spécification comme une variable explicative supplémentaire.
dans le but d’exploiter au maximum les informations relatives à l’inflation. Les résultats montrent que le prix du pétrole semble jouer un rôle significatif dans la détermination du taux d’inflation futur.

4.2 Méthodologie d’estimation

La courbe de Phillips mentionnée au-dessus, mise sous la forme d’un modèle à composantes non-observables, peut être analysée statistiquement sous la forme d’un modèle état mesure et être estimée à l’aide du filtre de Kalman. L’objectif de cette sous-section est en premier lieu d’illustrer la manière dans laquelle la courbe de Phillips peut être estimée et en second lieu de capturer les mouvements à long terme et à court terme de l’inflation – ceux qui sont économiquement interprétées respectivement comme l’inflation sous-jacente et l’inflation transitoire (l’écart de l’inflation).

Le traitement statistique d’un modèle à composantes non observables est effectué sous une forme d’état mesure du modèle. La méthode d’état mesure permet un traitement flexible. En utilisant la notation matricielle, un modèle à composantes non observables typique peut s’écrire sous la forme générale de la façon suivante :

\[
y_t = Z_t \alpha_t + \varepsilon_t \quad \text{avec } \varepsilon_t \sim NID(0,R_t) \tag{3.60}
\]

\[
\alpha_{t+1} = T_t \alpha_t + \eta_t \quad \text{avec } \eta_t \sim NID(0,Q_t) \tag{3.61}
\]

Pour \(t = 1 \ldots n \).

La première équation, appelée l’équation d’observation, relie les séries observées \(y_t \) à un vecteur d’état \(\alpha_t \) qui est normalement une des composantes inobservables de \(y_t \).

La deuxième équation, appelée l’équation d’état, décrit l’évolution du vecteur d’état – composante non observable directement.
Chapitre 3: Les approches économétriques

Les séries des innovations η_t se composent des vecteurs indépendants dont les moyennes sont nulles. Ils sont Gaussiens et associés à la matrice de covariance Q_t. ε_t est supposée avoir une moyenne égale à zéro, être distribuée normalement et être non auto corrélé.

Les matrices Z_t et T_t sont les matrices des paramètres du modèle.

La formulation d’état mesure d’un modèle à composantes non observées possède plusieurs avantages en termes de calculs. Dans cette formulation, il existe en effet des algorithmes simples pour estimer et prévoir les états non observés α_t en se basant sur les informations de la série observée y_t. Ces algorithmes fournissent ainsi les prévisions intra-échantillon et hors échantillon et les valeurs de la vraisemblance de y_t. Notons que la représentation d’État mesure d’un modèle à composantes non observables n’est pas unique. Dans la représentation qu’on retient ici, les composantes non observables apparaissent souvent comme des éléments des vecteurs d’état. Ceci rend les éléments des états interprétables, et, plus important, les estimations et les prévisions en échantillon sont obtenues simplement. Pour les informations supplémentaires sur les aspects mathématiques de cette modélisation, voir Durbin et Koopman (2001).

Sous la forme de la représentation d’état mesure, les modèles à composantes non observées peuvent être estimés à l’aide du filtre de Kalman.

Le filtre de Kalman est un algorithme récursif qui fournit une estimation optimale des vecteurs d’état conditionnée par un ensemble d’informations et de connaissances concernant les paramètres d’état mesure Z_t, T_t, Q_t et R_t.

Une récursion du filtre de Kalman se compose normalement de trois étapes:
Étape 1: Choisir la valeur de supposé de l’état à la date 0 ($\alpha_{0/0}$) et de la covariance de $\alpha_{0/0}$ (notée $p_{0/0}$). À chaque paramètre est assignée une valeur initiale choisie. Il est à noter que les estimations sont très sensibles à ces valeurs de supposition.

On peut ensuite prévoir le vecteur d’état et sa covariance selon

$$\alpha_{1/0} = T \cdot \alpha_{0/0}$$ (3.62)

et

$$p_{1/0} = Tp_{0/0}T' + Q$$ (3.63)

Étape 2: Prédiction: à la date 1, former une prédiction optimale de $y_{1/0}$ en utilisant la valeur de $\alpha_{1/0}$ estimée à l’étape 1 selon :

$$y_{1/0} = Z\alpha_{1/0}$$ (3.64)

Étape 3: Mise à jour: utiliser la valeur de y observée à la date 1 pour calculer l’erreur $v_{1/0}$ selon :

$$v_{1/0} = y_1 - y_{1/0}$$ (3.65)

La variance de l’erreur de prédiction peut être ensuite calculée :

$$f_{1/0} = Zp_{1/0}Z' + R$$ (3.66)

Cette erreur de prédiction peut être utilisée pour affiner la valeur de supposition de α selon :

$$\alpha_{1/1} = \alpha_{1/0} + K_1 \cdot v_{1/0}$$ (3.67)

K_1 est alors appelé la valeur de gain de Kalman à la date 1 et indique la pondération assignée à la nouvelle information.
Chapitre 3: Les approches économétriques

Ces trois étapes sont répétées \(n \) fois jusqu’à la fin de l’échantillon (donc pour les dates \(t = 1 \ldots n \)).

À la fin de ce processus itératif, les états du système, leurs variances et leurs erreurs de prédiction sont tous estimés.

De plus, on peut signaler qu’une autre technique, de la même famille que le filtre de Kalman permet d’estimer le modèle espace état : le lissage de Kalman. Tandis que le filtrage utilise les informations accumulées entre les dates 1 et \(t \) (\(\alpha_{t/t} \)) pour estimer les vecteurs d’état du système, le lissage utilise les informations de l’ensemble de l’échantillon entre les dates 1 et \(T \), (\(\alpha_{t/T} \)).

Le filtre de Kalman et l’estimation du maximum de vraisemblance

Jusqu’à cette étape, les paramètres des vecteurs d’état mesure \(Z_t ; T_t ; Q_t \) et \(R_t \) sont supposés être connus. En fait, ce n’est pas le cas et ces paramètres doivent être estimés. Le filtre de Kalman associé à la méthode du maximum de vraisemblance aide à déterminer l’estimation optimale de ces paramètres. Ceci peut être effectué assez simplement en ajustant la procédure du filtre de Kalman d’une étape supplémentaire qui revient à calculer la valeur du log-vraisemblance du système. La récursion du filtre de Kalman maintenant se compose de quatre étapes au lieu de trois.

Il est à noter que, l’utilisation du filtre de Kalman fournit la densité prédictive de \(y_t \) conditionnée par les informations étant données à \(t - 1 \), comme suit :

\[
y_t/Z_t \sim N(Z_t \alpha_{t-1/t}, Z_t p_{t/t-1} Z_t' + R) \quad (3.69)
\]

La log-vraisemblance peut donc être calculé par :
Chapitre 3: Les approches économétriques

\[
\ln L = -1/2 \sum_{t=1}^{T} \ln (2\pi^n \det(f_t/t_{t-1})) - 1/2 \sum_{t=1}^{T} \nu_t/t_{t-1} f_t/t_{t-1}^{-1} \nu_t/t_{t-1} \\
\text{ } \\
(3.70)
\]

Où

\[
\ln L = -1/2 \sum_{t=1}^{T} \ln \left[\det(Z_t p_{t/t-1} Z_t' + R) \right] - 1/2 \sum_{t=1}^{T} (y_t - Z_{tatt-1} Z_{ptt-1} Z_t + R - 1(y_t - Z_{tatt-1}) \\
\text{ } \\
(3.71)
\]

Les paramètres sont alors estimés par la maximisation de la log-vraisemblance. Enfin, on peut tester différentes possibilités afin de tenter d’obtenir une valeur plus grande de log-vraisemblance. Il est à noter que ce calcul donne la valeur exacte de log-vraisemblance et non pas une approximation. La seule exigence pour évaluer le log-vraisemblance à la date \(t \) est que la matrice covariance prédictive \(Z_t p_{t/t-1} Z_t' + R \) soit positive\(^{51}\).

4.3 Estimation et discussion

Notre intérêt pour ce modèle tient au fait qu’il aide à décomposer la série d’inflation observée en une série d’inflation sous-jacente et en autre série d’inflation transitoire, les deux composantes sur lesquelles est centré ce travail. Dans ce modèle, la relation entre inflation et écart de production est établie de façon explicite. Pour cette raison, par rapport aux deux approches appliquées dans les sections précédentes, il est raisonnable d’envisager l’estimation de séries d’inflation sous-jacente et d’inflation transitoire de meilleure qualité.

\(^{51}\) Malheureusement, ce problème arrive trop souvent. Si tel est le cas, il existe deux approches principales pour y faire face. La première consiste à estimer le modèle non contraint; si un écart est en négatif, le mettre à zéro et réestimer. Si cela fonctionne, elle devrait être le maximum global. Si deux variances sont négatives, ce n’est pas aussi évident de savoir comment procéder.
Nos estimations commencent avec la spécification la plus simple de la courbe de Phillips adaptée par Harvey(2011):

\[
\pi_t = \mu_t + \gamma_t + \beta_t x_t + \epsilon_t \quad \text{avec} \quad \epsilon_t \sim NID(0, \sigma^2_\epsilon) \quad (3.72)
\]

Où \(\pi_t \) présente l'inflation; \(\mu_t \) la composante tendancielle; \(\gamma_t \) la composante saisonnière et \(\epsilon_t \) la composante irrégulière; \(x_t \) écart de production et \(\beta \) est le coefficient qui est supposé de varier dans le temps.

La tendance \(\mu_t \) est un processus de marche aléatoire

\[
\mu_t = \mu_{t-1} + \eta_t \quad \text{avec} \quad \eta_t \sim NID(0, \sigma^2_\eta) \quad (3.73)
\]

La tendance de l'inflation suit une approche au niveau local, compatible avec la non-stationnariaté qui est généralement connue dans littérature de l'inflation.

L’effet saisonnier peut être modélisé par:

\[
\gamma_{1,t+1} = -\gamma_{1,t} - \gamma_{2,t} - \gamma_{3,t} - \gamma_{4,t} - \gamma_{5,t} - \gamma_{6,t} - \gamma_{7,t} - \gamma_{8,t} - \gamma_{9,t} - \gamma_{10,t} - \gamma_{11,t} + k_t \quad \text{avec} \quad k_t \sim NID(0, \sigma^2_k) \quad (3.74)
\]

\[
\gamma_{2,t+1} = \gamma_{1,t}
\]

\[
\gamma_{3,t+1} = \gamma_{2,t}
\]

\[...
\]

\[
\gamma_{11,t+1} = \gamma_{10,t}
\]

\[\]

\[52\] L’inclusion d’une composante cyclique a également été testée, mais il a été constaté de capturer de façon incorrecte certains épisodes aberrants typiques tels que des pics ou des creux trouvés dans les cycles sont insignifiant en terme statistique. Alors, cette composante n’a pas été tenu compte dans ce modèle d’estimation.
Chapitre 3: Les approches économétriques

L‘écart de production

est ajusté dans le modèle comme une variable

explicative supplémentaire qui aide à capturer la relation entre l‘inflation
transitoire et elle-même.

est un coefficient inconnu. La modélisation de

l‘écart de production comme une variable explicative demande de plus une
équation d‘état, qui est :
(3.75)
La perturbation

est fixée à zéro pour établir une relation stable entre

l‘inflation transitoire et l‘écart de production.
La présentation d’état mesure du modèle
Ce modèle à composantes inobservables peut être exprimé dans la forme
d‘état mesure suivante :

(3.76)

(3.77)

165


Notre modélisation étant appuyée sur un cadre macroéconomique de type courbe de Phillips de court-terme, nous pensons qu’il est préférable d’utiliser les séries mensuelles pour mieux capturer les mouvements de court terme de l’économie.

L’écart de production est identifié en l’extrayant de la série de la production industrielle avec un modèle à composantes inobservables. Il résulte de la décomposition des composantes séparées qui sont cohérentes avec nos attentes (voir la figure 32).

Figure 32: COMPOSANTES DE L’INFLATION- MESURÉES PAR LE MODÈLE À COMPOSANTES NON OBSERVABLES

Premièrement, on voit que la tendance estimée est une composante dont la dynamique est stable et domine presque 80% des mouvements de cette série temporelle, comme nous nous y attendions. Il est à noter que cette composante a une tendance à surpasser l’inflation observée pendant les périodes où l’inflation est basse. Ceci peut être expliqué grâce aux informations retenues lorsque l’on examine la deuxième composante : la saisonnalité. Chaque année, environ les trois quart du temps, l’inflation causée par les effets saisonniers est négative tandis que l’inflation tendancielle est presque toujours positive. L’inflation observée, en combinant simultanément les deux composantes : (tendancielle et saisonnière) devient donc inférieure à l’inflation tendancielle.
D’autre part, chaque année, l’inflation saisonnière augmente pendant seulement un quart du temps. Cette période se situe à la période avant, pendant et après la fête de Têt au Vietnam, la période durant laquelle la consommation s’accroît fortement, et la production chute du fait des longues vacances du Têt. Les pics importants qui apparaissent régulièrement sur le graphique de l’inflation saisonnière sont le résultat de ces périodes. Il est à noter que, ces pics coïncident presque parfaitement avec les pics de l’inflation observée.

Notons également que cette composante est particulièrement stable dans le temps. Il existe en fait seulement quelques variations faibles dont l’amplitude et la variance sont presque égales à zéro. Il est aussi possible de confirmer que cette composante ne varie pas dans le temps car le modèle estimé avec $\sigma_k^2 = 0$ donne des résultats plus significatifs que ceux retenus du modèle avec $\sigma_k^2 > 0$. Cette conclusion ici est très importante car une fois que cette composante est considérée comme constante, en pratique, pour obtenir la série desaisonné de l’inflation, il est possible de simplement utiliser des techniques traditionnelles, telles que le X11.

Quant à l’effet de l’écart de production sur l’inflation, son coefficient est presque toujours positif et affiche un niveau élevé de significativité statistique. Comme on peut le voir sur le Figure 33, ce coefficient varie fortement dans le temps mais conserve le signe positif théoriquement attendu.

Figure 33: COEFFICIENT DE L’ÉCART DE PRODUCTION
L’ajustement du modèle

Le modèle exhibe certaines propriétés statistiques qui justifient de sa qualité globale (voir les Figures 34 et 35 ci-dessous)

Premièrement, le modèle est convergent ce qui peut laisser envisager qu’il est bien formulé.

Similairement, la variance des erreurs de prédiction une step ahead – une mesure de base pour l’ajustement du modèle – montre ainsi une convergence rapide et est relativement faible.

Figure 34: CONVERGENCE DU MODÈLE À COMPOSANTES NON OBSERVABLES

53 Elle correspond à la variance des erreurs de prévision one step ahead.
Les tests de diagnostic statistiques pratiqués sur le modèle sont présentés dans le Tableau 27. Il est à noter que pour le modèle d’état mesure, ces tests sont effectués sur les résidus standardisés. Le test de Ljung-Box de non autocorrélation des résidus est effectué avec 10 décalages et aboutit à une P-value de 0.17 de sorte que l’hypothèse nulle de non autocorrélation des résidus peut être non rejetée au seuil de 5%.

Par contre, le test H d’homoscédasticité des résidus et le test de normalité des résidus affichent des P-values telles que les hypothèses nulles d’homoscédasticité et de normalité des résidus ne peuvent pas être retenues au seuil de 5%.

En ce qui concerne la non homoscédasticité des résidus, des analyses complémentaires montrent que la variation de cette composante de résidu dans
la première moitié de l’échantillon est beaucoup plus faible que dans le reste de l’échantillon. Ceci indique clairement l’hétéroscédasticité de la seconde moitié de l’échantillon induite notamment par l’apparition de la crise économique au cours de cette période.

La qualité « globale » du modèle en termes de convergence des estimateurs et de non autocorrélation des résidus permet à ce modèle de passer les principaux critères de qualité statistique. Néanmoins, le problème de la distribution anormale des résidus est toujours présent et peut être expliqué par la présence de certains chocs ponctuels sur l’inflation. Pour essayer de régler ce problème et ainsi améliorer l’ajustement du modèle, nous élargissons le modèle à la marge en y incorporant des variables d’intervention adaptées.

Variables d’intervention

0.6534(0.0000) pour dum2007. Ces impacts sont vus comme des ruptures dans la série de l’inflation. Il n’y a aucun changement dans la composante saisonnière estimée avec cette version du modèle par rapport à celle retenue du modèle initial. Le problème de la distribution anormale des résidus est alors résolu et le modèle final peut être utilisé pour effectuer la décomposition de l’inflation du Vietnam sur l’échantillon retenu.

L’indice d’inflation sous-jacente mesuré à l’aide de ce modèle est représenté sur le graphique 36 ci-dessous :

Figure 36: INDICE D’INFLATION SOUS-JACENTE MESURÉ À L’AIDE DU MODÈLE À COMPOSANTES NON OBSERVABLES

Au premier regard, on voit que les deux séries progressent au même rythme. Pendant les périodes de haute inflation, l’inflation sous-jacente se trouve inférieur à l’inflation observée et inversement pendant les périodes où l’inflation est basse. Ce sont des signes importants qui impliquent potentiellement la présence d’une relation tendancielle entre ces deux indices.

54 Pendant cette période, les causes de l’inflation élevée ne sont pas seulement l’augmentation du prix de l’énergie mondial et du prix de l’alimentation domestique. Plusieurs personnes ont insisté sur le fait que le taux d’intérêt sur les dépôts (8-9%/an) est resté relativement plus bas que le taux d’inflation (12%/an) durant cette période a ainsi fait grimper l’inflation. C’est la conséquence de la réaction lente de la Banque centrale du Vietnam aux signaux du marché.
Dans ce modèle, nous avons décomposé l’inflation observée en deux éléments : une composante permanente et une composante transitoire. L’hypothèse de base est que la composante transitoire capture toutes les variations conjoncturelles de l’inflation, y compris notamment les variations résultant de l’évolution de l’écart de production. Si la composante transitoire est bien capturée la composante devrait représenter l’effet des chocs permanents, mesurer l’inflation sous-jacente. Cette attente est ici satisfaite avec le modèle à composantes non observables. En effet, la corrélation entre l’écart de production et l’inflation transitoire est représentée dans le graphique 37 et laisse apparaître une liaison positive et compatible avec la théorie économique de la courbe de Phillips.

Figure 37: RELATION POSITIVE ENTRE L’ÉCART DE PRODUCTION ET L’INFLATION TRANSITOIRE

Cette corrélation positive est selon nous une preuve indirecte de la capacité du modèle à capturer des signaux décodurables en termes de théorie macroéconomique.

5. **Conclusion**

L’objectif principal de ce chapitre est d’estimer l’inflation sous-jacente pour le Vietnam à l’aide des modèles économétriques. Le but final à atteindre dans ce chapitre est d’extraire des indices de l’inflation « purs » dans le sens
que l’inflation sous-jacente mesurée entretient une relation d’équilibre avec l’inflation observée et que l’inflation transitoire est positivement corrélée avec l’écart de production.

Les modèles économétriques appliqués dans ce chapitre sont tour à tour choisis dans ce but. Parmi les résultats, ceux du modèle à composantes non observées semblent dominer les autres. À l’aide de ce modèle, l’inflation observée est décomposée en quatre composantes distinctes : la composante tendancielle, la composante transitoire, les variations saisonnières et les variations irrégulières. Les relations à court terme et à long terme entre l’inflation et la production sont d’autre part clairement interprétables à partir du cadre macroéconomique de référence.

Concernant les techniques d’estimation de l’inflation sous-jacente, certains points importants doivent être soulignés. Le modèle SVAR est le plus simple à mettre en œuvre et est le seul modèle qui relie directement la définition de l’inflation sous-jacente avec la technique d’estimation retenue. Le modèle à composantes non observables donne par contre les résultats les plus stables. À l’aide du filtre de Kalman, la mise à jour des séries d’entrée du modèle ne fait pas beaucoup changer les estimations. D’un autre côté, le modèle à tendances communes est le plus complexe à mettre en œuvre.

Parmi les trois séries d’inflation sous-jacente mesurée dans ce chapitre, celle obtenues à l’aide du modèle SVAR et du modèle à composantes non observées seront comparées dans le chapitre suivant quant à leur capacité prédictive.

Dans ce chapitre, le modèle à composantes non observées apparaît comme le modèle qui donne les meilleurs résultats. Nous retenons une version
« augmentée » de ce modèle dans lequel les composantes sont corrélées55. Les séries d’inflation sous-jacente et d’inflation transitoire apparaissent interprétables et vérifient certaines relations théoriquement attendues d’après la théorie macroéconomique. Ces résultats, joints aux indicateurs de qualité statistique usuels semblent confirmer la capacité de cette modélisation à mesurer l’inflation sous-jacente pour le Vietnam – au moins sur la période retenue.

55 Voir par exemple l’article de M.Sinclair (2013) « How well does core inflation capture permanent price changes sur ce point.
Chapitre 4

Évaluation de la performance des indices d’inflation sous-jacente

1. Introduction

Généralement, ces indicateurs de l’inflation sous-jacente sont conçus par deux principaux besoins des banques centrales.

Premièrement, prévoir l’inflation future à partir de ces indicateurs\(^{56}\).

\(^ {56}\) Cet indice d’inflation est désormais, dans cette these, appelé l’indice d’inflation prédictif.
Chapitre 4: Évaluation de la performance des indices d’inflation sous-jacente

Deuxièmement, utiliser les informations fournies par ces indicateurs pour essayer de mieux faire coïncider les cibles d’inflation avec les anticipations d’inflation des agents\(^{57}\).

Ces deux besoins proviennent des limites dans la capacité des Banques centrales à contrôler le taux d’inflation. Dans le cas du Vietnam, l’élaboration d’un indice d’inflation sous-jacent permettant de correctement prévoir l’inflation est un besoin incontournable et prioritaire pour la période actuelle et pour l’avenir proche. La nécessité d’une prévision d’inflation efficace est en effet cruciale pour le Vietnam. L’indice d’inflation sous-jacent que nous retiendrons devra donc au minimum prérequis pour ce système de prévision est d’avoir au moins un indice d’inflation posséder un grand pouvoir prédictif de l’inflation observée.

Tandis que la construction d’un indice d’inflation prédictif est l’objectif immédiat, pour le Vietnam, la publication de cet indice facilitera également la politique monétaire par son impact sur les anticipations. Une fois cet indice publié, il deviendra la référence de l’inflation d’anticipation du public ainsi que la base d’évaluation de l’efficacité de la politique monétaire. Néanmoins, cet indice ne peut pas être le premier objectif pour une économie en transition et émergente comme le Vietnam. En effet, d’une part, de telles économies sont impactées par plus de chocs que les économies développées, ce qui peut pousser l’inflation effective à s’écarter fréquemment et parfois durablement de l’inflation de référence. D’autre part, la part du public qui se préoccupe de l’inflation ou du ciblage de l’inflation au Vietnam est encore très limitée, donc, l’inflation de référence devient vide de sens dans ces conditions.

\(^{57}\) Cet indice d’inflation est désormais dans cette thèse appelé l’indice d’inflation de référence.
Chapitre 4: Évaluation de la performance des indices d’inflation sous-jacentes

Pour que l’indice d’inflation de référence joue bien son rôle, il est en fait nécessaire que la politique monétaire soit transparente et que les justifications de cette politique monétaire au public soient claires. Ensuite, il faut mettre en place des stratégies de communication spécifiques de la politique monétaire au public.

En outre, l’indice d’inflation de référence reflète l’objectif de la politique monétaire dans le contrôle de l’inflation. Il est donc important que cet objectif soit fiable, réalisable et basé sur des prévisions pertinentes.

Tous ces arguments nous persuadent qu’il faut, en priorité, déterminer un indice d’inflation qui soit, au minimum, prédictif.

Le chapitre sera centré sur cette question et cherchera à déterminer un ensemble de critères statistiques permettant, in fine, de sélectionner le critère d’inflation sous-jacent le plus pertinent pour les besoins de la politique monétaire du Vietnam.

Notons de plus, qu’au-delà des raisons citées ci-dessus, il y a une autre raison importante qui motive notre choix. La Banque centrale du Vietnam est en train d’envisager l’utilisation d’un ciblage de l’inflation. Or, le cadre opérationnel de cette politique exige une infrastructure technique complète et avancée appuyée sur un système de prévision pour quantifier les conséquences des scénarios de politiques monétaires envisagés, en vue de définir la stratégie de politique monétaire finalement retenue.

Comme les chapitres précédents l’ont mis en évidence, il existe deux catégories d’indice d’inflation sous-jacentes : ceux calculés à partir de méthodes statistiques non économétriques et ceux clairement basés sur des modèles économétriques.
Chapitre 4: Évaluation de la performance des indices d’inflation sous-jacente

Or, il semble que chacune de ces deux familles d’indicateurs ne peut pas satisfaire simultanément les deux besoins du Vietnam. En effet, les indices économétriques semblent avoir une meilleure capacité de prévision mais ils ne peuvent que difficilement jouer le rôle d’un indice de référence pour le public du fait de leur difficulté d’interprétation et de leur mode de calcul complexe. Par contre, les indices statistiques qui sont largement utilisés comme indice de référence dans le monde sont dans le cas du Vietnam fortement biaisés par rapport à l’inflation observée et possèdent un pouvoir prédictif faible.

Ce chapitre est organisé comme suit. La section 1 porte sur l’évaluation du degré des indices d’inflation sous-jacente qui ont été mesurés dans les deux chapitres précédents. Elle se compose de deux sous-sections. La première sous-section présente la synthèse des critères d’évaluation de l’inflation sous-jacente existant dans la littérature. L’application de ces critères de nos indices d’inflation sous-jacente est reportée dans la deuxième sous-section. La section 2 examine finalement la capacité de prévision de nos indices d’inflation sous-jacente. La dernière section conclue le chapitre.

2. Propriétés théoriques et empiriques des indices d’inflation sous-jacente

2.1 Les propriétés théoriques

Cette sous-section cherche à répondre à la question suivante: « quelles sont les propriétés attendues d’un indice d’inflation sous-jacente pertinent ? ». Afin de vérifier ces propriétés avec les indices d’inflation sous-jacentes calculés dans les chapitres précédents, nous chercherons ensuite à préciser les tests, les critères et les indicateurs pouvant être utilisés pour essayer de savoir si ces propriétés sont ici vérifiées.
L’inflation sous-jacente, dans la littérature, est généralement considérée comme un produit de la politique monétaire ainsi qu’un outil de celle-ci. Étant donné que l’inflation est globalement un phénomène monétaire, l’inflation sous-jacente est en quelque sorte étroitement liée à la politique monétaire. Quand elle est un produit de la politique monétaire, il est espéré qu’elle soit fortement corrélée à la croissance de la masse monétaire, selon Bryan et Cecchetti (1994). D’autre part, dans le rôle d’un outil de la politique monétaire, on peut s’attendre à ce qu’elle puisse avoir une bonne capacité de prévision de l’inflation sur un horizon long compris entre 1 et 6 ans. Dans ce cas, elle peut fournir des informations sur l’évolution future de l’inflation observée.

Chapitre 4: Évaluation de la performance des indices d’inflation sous-jacente

l’inflation sous-jacente devient ainsi un facteur indispensable dans la formulation des décisions de la politique monétaire.

Dans la plupart des cas, l’inflation sous-jacente est mesurée à des fins de politique monétaire dans le cadre du ciblage et de la maîtrise de l’inflation. Dans le contexte de cet objectif de la politique monétaire, l’inflation sous-jacente vient à jouer un rôle de moyen de communication de la Banque centrale avec le grand public. Elle est donc simultanément envisagée comme l’objectif et le résultat de la politique monétaire par le public. L’indicateur d’inflation sous-jacente doit donc respecter des critères d'intelligibilité, de pertinence, de fiabilité, de comparabilité.

Les principaux critères de « bonne qualité » d’un indicateur d’inflation sous-jacente proposés dans la littérature peuvent être listés comme suit.

Roger (1997) a proposé les critères suivants :

i. L’inflation sous-jacente doit être calculable rapidement. Sinon, elle ne peut pas être disponible pour une utilisation en temps opportun.

ii. L’inflation sous-jacente doit être robuste et non-biaisée. Dans le cas contraire, elle fournit des signaux erronés, conduisant à un biais dans la politique monétaire et n’est pas crédible auprès des agents.

iii. L’inflation sous-jacente doit être vérifiable ex-post. Si ce n’est pas le cas, il est probable qu’elle n’acquière pas une grande crédibilité auprès du public.

Ces critères sont essentiellement des critères qualitatifs permettant d’évaluer et de sélectionner des indices de l’inflation sous-jacente qui serviront pour établir la stratégie de communication de la politique monétaire. Ces critères ne concernent qu’indirectement la capacité prédictive de l’inflation sous-jacente au sens économétrique du terme.
Wynne (1999) a proposé les critères suivants :

i. L’inflation sous-jacente doit être calculable en temps réel. Ce critère est semblable au critère (i) proposé par Roger (1997).

ii. L’inflation sous-jacente doit représenter une vision prospective de l’inflation.

iii. L’inflation sous-jacente doit être facilement compréhensible par les agents.

iv. L’inflation sous-jacente doit pouvoir expliquer l’inflation passée.

v. L’inflation sous-jacente doit être définitive dans le sens où ses valeurs estimées ne changent pas lorsque les observations sont mises à jour.

vi. L’inflation sous-jacente doit avoir une base théorique.

Bien que ces critères soient plus détaillés que ceux de Roger (1997), ils restent relativement vagues, imprécis et peu sélectifs. Notons cependant que du part de vue du critère (iii), les mesures statistiques simples telles que celles basées sur la moyenne, la médiane ou bien sur l’exclusion de composantes sont les plus faciles à présenter et à interpréter. Notons de plus que les mesures statistiques vérifient le critère (iv) davantage que les mesures basées sur des modélisations économétriques. Le critère (i) est plutôt une condition préalable et obligatoire pour tous les indices d’inflation sous-jacent plutôt qu’une propriété attendue d’un indice d’inflation sous-jacente.

Marques et al (2000) propose pour sa part les critères suivants :

i. Les deux indices – d’inflation sous-jacente et d’inflation observée – doivent être cointégrés (1,1). L’inflation sous-jacente et l’inflation observée doivent donc être statistiquement reliées par une relation stable de cointégration avec un vecteur cointégrant (1;-1). Un tel vecteur cointégrant implique que l’écart entre ces deux indicateurs doit être stationnaire de sorte que l’inflation observée et l’inflation sous-jacente
ont une tendance commune de sorte que les deux variables ne divergent pas à long terme.

ii. L’inflation sous-jacente doit être un attracteur de l’inflation observée. En effet, si l’inflation sous-jacente capture effectivement l’influence des mécanismes fondamentaux de l’inflation, l’inflation observée doit converger au fil du temps vers l’inflation sous-jacente une fois dissipée l’influence des bruits et des rigidités. Si cette condition est vérifiée, l’inflation observée peut s’écarter de l’inflation sous-jacente par valeurs supérieures ou inférieures mais convergera vers le taux d’inflation sous-jacente asymptotiquement. Ce critère est très important car il assure que l’inflation sous-jacente se comporte comme un prédicteur de l’inflation future.

iii. L’inflation observée ne doit pas être un attracteur de l’inflation sous-jacente. En effet, si l’inflation sous-jacente anticipe la tendance de long terme, celle-ci ne peut pas anticiper l’inflation sous-jacente.

Ces critères sont statistiquement plus précis que ceux de Roger ou Wynne. Ils ont l’avantage de pouvoir être testés. Chaque condition peut être convertie en une hypothèse statistique qui peut être vérifiée avec des techniques économétriques.

Selon Hogan, Johnson et Laflèche(2001), l’inflation sous-jacente doit d’être un meilleur guide que l’inflation observée pour la conduite de la politique monétaire. Ces auteurs ont donc proposé les deux critères suivants :

i. L’inflation sous-jacente doit correctement refléter la tendance actuelle et future de l’inflation observée. Un indice d’inflation sous-jacente utile doit donc éliminer le plus possible les bruits présents dans la tendance de l’inflation observée. Cette condition est détaillée dans les critères suivants :
Chapitre 4: Évaluation de la performance des indices d’inflation sous-jacente

- L’inflation sous-jacente doit être plus persistante ou moins volatile que l’inflation observée.
- L’inflation sous-jacente doit avoir un pouvoir prédictif quant à l’inflation future.

ii. L’inflation sous-jacente doit être la cible réalisable et contrôlable de la politique monétaire. Car elle est considérée comme l’objectif opérationnel de la politique monétaire. La relation étroite entre la politique monétaire et l’inflation sous-jacente suggère que c’est cet indicateur qui doit être privilégié dans la communication de la Banque centrale auprès public. Pour qu’elle joue bien son rôle, il est nécessaire de satisfaire les conditions suivantes :
 - L’inflation sous-jacente ne doit pas exclure un grand nombre de composantes de l’inflation observée.
 - La mesure de l’inflation sous-jacente ne doit pas changer fréquemment et doit être considérée par le public comme étant sous contrôle de l’autorité monétaire.
 - Le ciblage de l’inflation sous-jacente doit être réalisable dans le sens où l’autorité monétaire a la capacité d’atteindre à définir cette cible. Cette condition contribue à assurer la crédibilité de la stratégie monétaire en matière d’inflation.

Ces critères sont en partie qualitatifs et en partie quantitatifs. Néanmoins, si certains de ces critères sont clairs, ils sont difficilement évaluables ou testables dans un cadre purement statistique.

Avant de conclure cette sous-section, il est important de remarquer qu’il ne faut pas appliquer ces critères de façon stricte pour évaluer l’inflation sous-jacente. En effet, l’inflation sous-jacente n’est pas directement observable. De plus, sa définition n’est pas tranchée et les méthodologies d’estimation sont très diverses. De ce fait, il est évidemment difficile de déterminer un jeu complet et unique de critères pour évaluer l’inflation sous-jacente.
Malgré cela, il est nécessaire de réaliser des évaluations et des comparaisons des indices obtenus. Afin d’identifier les propriétés de chaque indice, de vérifier si chaque indice répond à nos attentes et s’il peut d’être utilisé pour aider à accroître l’efficacité de la politique monétaire.

2.2 Les performances des indices d’inflation sous-jacente du Vietnam

Il existe une grande différence entre les indices d’inflation sous-jacente mesurés par les mesures statistiques et les indices d’inflation sous-jacente mesurés à l’aide des modèles économiques. Les indices statistiques semblent être les plus persistants tandis que les indices économétriques sont les plus proches de l’évolution de l’inflation observée. Cette différence importante entre ces deux groupes d’indices d’inflation sous-jacente nous laisse présumer des difficultés dans l’évaluation et la comparaison de ces indices.

Comme nous l’avons vu dans la section précédente, la littérature suggère plusieurs critères pour évaluer la performance d’un indice d’inflation sous-jacente mais aucun de ces critères ne convient pour toutes les mesures. Il est donc important que le jeu de critères d’évaluation soit établi de manière flexible et au cas par cas. Dans notre cas, en prenant pour références les critères présentés au-dessus, nous proposons un jeu des critères qui seront utilisée pour vérifier la performance de nos indices d’inflation sous-jacente mesurée pour le Vietnam. Notre opinion est que, tous les critères d’évaluation sont nécessaires mais que les critères que nous avons choisis pour notre analyse sont nécessaires pour assurer que l’inflation sous-jacente soit prédictive. Ces critères sont qualitatifs et testables à l’aide des techniques économétriques adaptées. Ces

\[59\] Ils sont nommés les indices statistiques et les indices économétriques, respectivement dans la suite du chapitre.
Chapitre 4: Évaluation de la performance des indices d’inflation sous-jacentes

critères sont les suivants. De plus, ils ne se composent que de critères qualitatifs qui sont testables à l’aide des techniques économétriques suivantes :

i. Il existe une relation d’équilibre de long terme stationnaire entre l’inflation sous-jacente et l’inflation observée

ii. L’inflation sous-jacente se comporte comme un attracteur de l’inflation observée.

iii. L’inflation observée n’est pas un attracteur de l’inflation sous-jacente.

iv. L’inflation sous-jacente n’est pas une mesure biaisée de l’inflation observée.

v. L’inflation sous-jacente est moins volatile que l’inflation observée.

Pour vérifier le premier critère, nous avons recours à un test de cointégration.

S’il existe une relation de cointégration entre l’inflation observée et l’inflation sous-jacente, nous considérons qu’il existe effectivement une relation d’équilibre de long terme entre ces deux variables. Étant donné que nous travaillons ici avec deux variables (l’inflation observée et l’inflation sous-jacente), il ne peut exister au maximum qu’une seule relation de cointégration entre ces variables. De ce fait, l’emploi de la méthode d’Engle-Granger semble ici justifié. Cette méthode peut être présentée en trois étapes comme suit.

La première étape de la méthode consiste à tester l’existence d’une racine unité dans le processus de chacune des variables.

La seconde étape est ensuite basée sur l’estimation par les MCO de la relation linéaire suivante :

\[\pi_t = \alpha + \beta \pi_t^* + \varepsilon_t \]

(4.1)
La troisième étape consiste enfin à tester l’hypothèse nulle de racine unité du résidu de la régression précédente (ξ_t) à partir d’un test de racine unité. Sous l’hypothèse nulle, la présence d’une relation de cointégration est rejetée. Par contre, sous l’hypothèse alternative, l’inflation observée et l’inflation sous-jacente sont co-intégrées et entretiennent donc une relation d’équilibre de long terme stationnaire. La présence d’une relation de cointégration témoigne alors de la présence d’une relation de long-terme entre l’inflation et l’inflation sous-jacente.

Si l’inflation sous-jacente est un indicateur avancé non biaisé de l’inflation, la relation de cointégration $\pi_t = \alpha + \beta \pi_t^* + \varepsilon_t$ doit de plus vérifier $E_t(\pi_t) = \pi_t^*$ (voir par exemple Ribba, 2003), soit encore $\beta = 1$ et $\alpha = 0$.

Dans ce cas d’une relation de cointégration, cette condition est vérifiée si le différentiel $(\pi_t - \pi_t^*)$ est stationnaire et de moyenne nulle :

$$\pi_t - \pi_t^* = \varepsilon_t \sim I(0) \quad \text{et} \quad E_t(\pi_t - \pi_t^*) = 0 \quad (4.2)$$

Dans le cadre de la procédure d’Engle-Granger une procédure de test envisageable de l’hypothèse nulle peut être la suivante.

Si le test de racine unité effectué sur le résidu estimé $\hat{\varepsilon}_t$ permet de rejeter l’hypothèse nulle de racine unité (et donc accepter la présence d’une relation de cointégration), nous imposons ensuite l’hypothèse nulle $Ho: (\alpha; \beta) = (0; 1)$ en calculant le différentiel :

$$\pi_t - \pi_t^* = \eta_t \quad (4.3)$$

Un test de racine unité effectué sur η_t permet alors de tester indirectement l’hypothèse nulle $Ho: (\alpha; \beta) = (0; 1)$.

En effet, si le test rejette l’hypothèse nulle de racine unité en faveur de la stationnarité, les paramètres $(\alpha; \beta)$ sont suffisamment proches de $(0; 1)$ pour
Chapitre 4: Évaluation de la performance des indices d’inflation sous-jacente

que la relation de cointégration initialement détectée avec \((\alpha; \beta)\) libres ne soit pas déformée en imposant \((\alpha; \beta) = (0; 1)\). Notons qu’une procédure alternative consisterait à tester la présence d’une relation de cointégration avec la méthode du maximum de vraisemblance de Johansen-Juselius puis à tester l’hypothèse nulle \((\alpha; \beta) = (0; 1)\) si le test la Trace de Johansen-Juselius ne rejette pas la présence d’une relation de cointégration.

Les résultats des tests de racine unitaire sur \(\eta_t\) sont reportés en détails dans l’annexe 6. La série d’inflation et les séries d’inflation sous-jacente sont I(1) et les tests de cointégration semblent montrer la présence systématique d’une relation de cointégration à l’exception des séries WTM325, WMEDIAN et DOWN\(^{60}\).

Afin de vérifier le deuxième critère et le troisième critère, nous testons la signification du mécanisme de correction d’erreurs (ECM) dans les systèmes de VECM suivants :

\[
\Delta \pi_t = \alpha_1 + \sum_{j=1}^{n} \beta_{1j} \Delta \pi_{t-j} + \sum_{j=1}^{n} \gamma_{1j} \Delta \pi_{t-j}^* + \lambda_1 (\pi_{t-1} - \pi_{t-1}^*) + \epsilon_{1t} \tag{4.4}
\]

\[
\Delta \pi_t^* = \alpha_2 + \sum_{j=1}^{n} \beta_{2j} \Delta \pi_{t-j} + \sum_{j=1}^{n} \gamma_{2j} \Delta \pi_{t-j}^* + \lambda_2 (\pi_{t-1} - \pi_{t-1}^*) + \epsilon_{2t} \tag{4.5}
\]

\(^{60}\) DOWN : L’indice d’inflation sous-jacente mesurée par la méthode de pondération réduite.

WTM325: L’indice d’inflation sous-jacente mesurée par la moyenne tronquée dont le taux de troncature est de 3% dans la queue de gauche et de 15% dans la queue de droite de la distribution.

WMEDIAN: L’indice d’inflation sous-jacente mesurée par la médiane pondérée
λ₁ et λ₂ sont respectivement les paramètres qui reflètent la vitesse d’ajustement de l’inflation observée et de l’inflation sous-jacente. Si λ₁ est négatif et significatif, le taux d’inflation aura tendance à retourner vers son niveau d’équilibre. Selon cela, lors que l’inflation observée est supérieure à l’inflation sous-jacente, alors au fil du temps elle a la tendance à diminuer et atteint au niveau d’équilibre avec l’inflation sous-jacente. Au contraire, dans le cas de λ₂.

La première hypothèse nulle testée est \(H₀ : λ₁ = 0 \). Le rejet de l’hypothèse nulle suggère alors que \(π₁^* \) est un attracteur de \(πₜ \).

La deuxième hypothèse nulle testée est \(H₀ : λ₂ = 0 \). Si cette hypothèse n’est pas rejetée par les données, l’inflation sous-jacente est faiblement exogène dans le modèle VECM estimé, de sorte que seule l’inflation observée s’ajuste progressivement vers l’indice d’inflation sous-jacente. Dans le cas où Ho est rejetée par les données, la non exogénéité de l’indice d’inflation sous-jacente limite sérieusement les possibilités d’utiliser cet indice comme un indicateur avancé du taux d’inflation futur.

Ces hypothèses seront testées à l’aide des statistiques de Student conventionnelles \(t \)^{61}.

^{61} Ribba (2003) ajoute à ces conditions le fait qu’il doit exister une relation causale à sens unique de l’inflation sous-jacente vers l’inflation observée à la fréquence zéro et une seule correction de l’erreur. Dans ce cas, le modèle VECM doit alors se réduire à

\[
\Delta πₜ = α₁ + \sum \beta₁ᵢ Δπᵢ₋₁ + \sum \gammaᵢ₁ Δπᵢ₋₁ + \lambda₁(πᵢ₋₁ − πᵢ₋₋₁) + ε₁ₜ
\]

\[
\Delta π₁^* = α₂ + \sum \gamma₂ᵢ Δπᵢ₋₁ + ε₂ₜ
\]
Les 11 indices d’inflation sous-jacente suivants satisfont simultanément à ces tests : l’indice EXHPFS ; l’indice EXPO ; l’indice EXPF ; l’indice EXPFT ; l’indice EXF ; l’indice WTM36 ; l’indice WTM315 ; l’indice WTM1515 ; l’indice WTM1015 ; l’indice COREUCM et l’indice DFI. Les détails des tests effectués sont reportés dans l’annexe 7.

Afin de s’assurer de l’absence de biais entre l’inflation sous-jacente et l’inflation observée, nous effectuons également un test de comparaison de moyennes. Nous utilisons pour cela le test ANOVA associé à l’hypothèse nulle d’égalité des moyennes.

Le critère (v) selon lequel la volatilité de l’inflation sous-jacente soit être plus faible que la volatilité de l’inflation observée est évalué à partir de l’écart-type de chacune des deux séries.

Les résultats sont reportés en détails dans l’annexe 8 et 9, respectivement. Pour la plupart des cas, l’hypothèse nulle d’égalité des moyennes entre l’inflation observée et l’inflation sous-jacente est significativement acceptée, à l’exception quatre indices : WTM325 ; DOWN ; WMEDIAN et CORECMT. Il n’y a que deux indices d’inflation sous-jacente plus volatile que l’indice d’inflation observée, ce sont l’indice EXHP et l’indice CORECMT.

Quelques remarques concernant ce processus des vérifications:

En observant les évolutions des séries de l’inflation sous-jacente mesurées, nous avons vu que la plupart des séries possèdent une relation de cointégration avec l’indice d’inflation observée. Les indices d’inflation dans

Note 62 : Voir les abréviations dans l’annexe 4 à la fin de ce chapitre
notre cas sont bien caractérisés comme un processus intégré de l'ordre 1, en autre mot ce sont les variables I(1)\(^63\).

Le tableau suivant donne un aperçu du total des indices d’inflation sous-jacente qui sont mesurés dans cette thèse.

Tableau 28: SYNTHÈSES DES INDICES D’INFLATION SOUS-JACENTE MESURÉS\(^64\)

<table>
<thead>
<tr>
<th>Critère 1</th>
<th>Critère 2+3</th>
<th>Critère 4</th>
<th>Critère 5</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXT</td>
<td>Satisfait</td>
<td>Non satisfait</td>
<td>Satisfait</td>
<td>Non satisfait</td>
</tr>
<tr>
<td>EXHP</td>
<td>Satisfait</td>
<td>Non satisfait</td>
<td>Satisfait</td>
<td>Non satisfait</td>
</tr>
<tr>
<td>EXHPFS</td>
<td>Satisfait</td>
<td>Satisfait</td>
<td>Satisfait</td>
<td>Satisfait</td>
</tr>
<tr>
<td>EXH</td>
<td>Satisfait</td>
<td>Non satisfait</td>
<td>Satisfait</td>
<td>Non satisfait</td>
</tr>
<tr>
<td>EXP</td>
<td>Satisfait</td>
<td>Satisfait</td>
<td>Satisfait</td>
<td>Satisfait</td>
</tr>
<tr>
<td>EXPF</td>
<td>Satisfait</td>
<td>Satisfait</td>
<td>Satisfait</td>
<td>Satisfait</td>
</tr>
<tr>
<td>EXPFT</td>
<td>Satisfait</td>
<td>Satisfait</td>
<td>Satisfait</td>
<td>Satisfait</td>
</tr>
<tr>
<td>EXPFTH</td>
<td>Satisfait</td>
<td>Non satisfait</td>
<td>Satisfait</td>
<td>Non satisfait</td>
</tr>
<tr>
<td>EXF</td>
<td>Satisfait</td>
<td>Satisfait</td>
<td>Satisfait</td>
<td>Satisfait</td>
</tr>
<tr>
<td>WTM36</td>
<td>Satisfait</td>
<td>Satisfait</td>
<td>Satisfait</td>
<td>Satisfait</td>
</tr>
<tr>
<td>WTM315</td>
<td>Satisfait</td>
<td>Satisfait</td>
<td>Satisfait</td>
<td>Satisfait</td>
</tr>
<tr>
<td>WTM325</td>
<td>Non satisfait</td>
<td>Non satisfait</td>
<td>Non satisfait</td>
<td>Non satisfait</td>
</tr>
<tr>
<td>WTM1010</td>
<td>Satisfait</td>
<td>Non satisfait</td>
<td>Satisfait</td>
<td>Non satisfait</td>
</tr>
</tbody>
</table>

\(^{63}\) Voir les détails dans l’Annexe 5, le Tableau 29

\(^{64}\) Voir les abréviations dans l’annexe 4 à la fin de ce chapitre.
Chapitre 4: Évaluation de la performance des indices d’inflation sous-jacente

<table>
<thead>
<tr>
<th></th>
<th>Satisfait</th>
<th>Satisfait</th>
<th>Satisfait</th>
<th>Satisfait</th>
<th>Satisfait</th>
</tr>
</thead>
<tbody>
<tr>
<td>WTM1515</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WTM1015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOWN</td>
<td>Non satisfait</td>
<td>Non satisfait</td>
<td>Non satisfait</td>
<td>Satisfait</td>
<td>Non satisfait</td>
</tr>
<tr>
<td>WMEDIAN</td>
<td>Non satisfait</td>
<td>Non satisfait</td>
<td>Non satisfait</td>
<td>Satisfait</td>
<td>Non satisfait</td>
</tr>
<tr>
<td>CORESVAR</td>
<td>Satisfait</td>
<td>Non satisfait</td>
<td>Satisfait</td>
<td>Satisfait</td>
<td>Non satisfait</td>
</tr>
<tr>
<td>COREUCM</td>
<td>Satisfait</td>
<td>Satisfait</td>
<td>Satisfait</td>
<td>Satisfait</td>
<td>Satisfait</td>
</tr>
<tr>
<td>DFI</td>
<td>Satisfait</td>
<td>Satisfait</td>
<td>Satisfait</td>
<td>Satisfait</td>
<td>Satisfait</td>
</tr>
<tr>
<td>CORECMT</td>
<td>Satisfait</td>
<td>Non satisfait</td>
<td>Non satisfait</td>
<td>Non satisfait</td>
<td>Non satisfait</td>
</tr>
</tbody>
</table>

Note:
Critère 1 : L’inflation sous-jacente a une relation d’équilibre de long terme avec l’inflation observée.
Critère 2+3 : L’inflation sous-jacente est l’attracteur de l’inflation observée et l’inflation observée n’est pas l’attracteur de l’inflation sous-jacente.
Critère 4 : L’inflation sous-jacente n’est pas biais de l’inflation observée.
Critère 5 : L’inflation sous-jacente est moins volatile que l’inflation observée.

Les indices qui marqués en couleur dans le tableau ci-dessus sont les plus performants. Ils ont passé avec succès nos tests de performance. Une constatation intéressante, est que tous les groupes de mesures d’inflation sous-jacente (la moyenne tronquée, l’exclusion de l’approche statistique et l’approche économétrique) possèdent au moins un indice qui répond bien correctement propriétés attendues.

Les résultats d’estimation présentés dans le tableau ci-dessus suggèrent les commentaires suivants.

Premièrement, la plupart des indices obtenus sont statistiquement corrélés avec l’inflation observée. Le premier élément de preuve est que les R^2
Chapitre 4: Évaluation de la performance des indices d’inflation sous-jacente

des estimations du modèle $\pi_t = \pi_t^* + \epsilon_t$ sont tous relativement élevés.65 D’autre part, tous les indices d’inflation sous-jacente entrent dans une relation de cointégration avec l’inflation observée à l’exception de l’indice WTM325, de l’indice WMEDIAN et de l’indice DOWN.

Deuxièmement, concernant la méthode de la moyenne tronquée, la troncature avec le même ratio sur les deux queues (à gauche et à droite) de la distribution des variations des prix semble être systématiquement. Cette méthode fournit en effet des indices optimaux malgré le fait que dans le cas du Vietnam, la distribution des variations des prix soit typiquement asymétrique. L’indice WTM1515 est clairement une illustration de cette constatation. Ce sont les pondérations très différentes et très variées des composantes de l’IPC du Vietnam qui favorisent ce résultat.

En ce qui concerne la méthode de la moyenne tronquée, d’autres points sont à remarquer avec la base de données des prix du Vietnam, l’application d’un taux de troncature important n’est pas nécessaire. Cela aboutirait à un biais important entre l’inflation sous-jacente et l’inflation observée. Avec un taux troncature de 25% pour la queue de droite, l’indice WTM325 devient clairement biaisé par rapport à l’indice de l’inflation observée et même par rapport à l’indice WTM315. L’application de taux de troncature faibles peut également fournir des indices efficaces (par exemple des taux de 3% et de 6% dans le cas de l’indice WTM36).

Troisièmement, les indices de la médiane et de la médiane pondérée s’écartent de façon important de l’inflation observée. Cela n’est pas une surprise car dans les distributions très asymétriques comme celle du Vietnam, les médianes sont généralement très éloignées des valeurs moyennes. Ces deux

65 Voir les détails dans l’Annexe 6 le tableau 31
mesures ne conviennent donc pas, et les indices mesurés en utilisant ces deux méthodes ne sont pas validés par les tests de performance effectués.

C’est également le cas pour la mesure de la pondération réduite. Notre opinion est que cette mesure avait pu s’avérer efficace au sens de nos critères mais le problème est ici lié au fait que la structure de l’IPC du Vietnam est très particulière. Elle ne se compose que de 13 composantes et les pondérations de ces composantes sont très différentes les unes des autres. De plus, les évolutions d’un certain nombre de ces 13 composantes sont extrêmement variables par rapport aux autres. Par conséquence, l’indicateur d’inflation sous-jacente s’écarte fortement de l’indice d’inflation observée avec la méthode des pondérations réduites. Cependant, dans d’autres pays et avec une base de données plus détaillée pour l’IPC, cette méthode est généralement performante. Par exemple, dans le cas du Japon, cette méthode apparaît valide avec une base de données composée de 88 sous-indices de prix. Dans le cas du Canada, c’est avec une base de données constituée de 54 sous-indices de prix, que l’indice de l’inflation sous-jacente mesuré à l’aide de cette méthode se révèle être pertinent.

Quatrièmement, les modèles économétriques, malgré qu’ils soient strictement établis en se basant sur la littérature macro-économique, dans la pratique, et notamment dans le cas du Vietnam ont une pertinence parfois limitée. Pour avoir de bons résultats, ces modèles exigent une cohérence forte entre les données, les contraintes macroéconomiques et les méthodes économétriques choisies. Un seul modèle parmi les trois modèles que nous avons appliqués donne le résultat attendu : c’est le modèle à composantes inobservables (l’indice mesuré à l’aide de ce modèle est noté COREUCM). Heureusement, ce seul représentant de l’approche économétrique semble se comporter très bien par rapport à nos attentes.

3. La capacité prédictive des indices d’inflation sous-jacente

Il y a un certain nombre de méthodes qui peuvent être utilisées afin de vérifier et de comparer la capacité prédictive des mesures de l’inflation sous-jacente. Dans cette partie, nous retenons deux méthodes qui ont été largement utilisées en pratique :

- L’approche proposée par Bryan et Cecchetti (1994)
- L’approche proposée par Cogley (2002)

66 Voir les abréviations dans l’annexe 4 à la fin de ce chapitre.

67 Bryan et Cecchetti ont proposé deux modèles pour vérifier la capacité prédictive des mesures de l’inflation sous-jacente. Le premier est un modèle univarié qui est donné par l’équation (4.4). Le second est un modèle multivarié qui ne sera pas retenu ici car il nécessite l’incorporation de variables macroéconomiques supplémentaires non disponibles facilement pour le Vietnam.
L’approche développé par Bryan et Cecchetti est facilement décrite par l’équation suivante :

\[
\pi_t = \alpha + \beta (\pi_{t-12}^*) + \varepsilon_t
\] (4.6)

L’inflation au temps \(t \) (\(\pi_t \)) peut être prévue grâce à l’inflation sous-jacente décalée de 12 mois. Autrement dit, l’inflation sous-jacente actuelle contient des informations pertinentes pour prévoir l’inflation future à un an.

Dans la pratique, l’estimation de cette régression fournit plusieurs informations utiles pour l’évaluation de la capacité prédictive des indices de l’inflation sous-jacente.

Premièrement, si \(\beta \neq 0 \) de manière significative, l’inflation sous-jacente contient une information pertinente pour l’évolution de l’inflation observée et possède donc une capacité de prévision de l’inflation future.

Deuxièmement, si \(\alpha = 0 \) et \(\beta = 1 \), l’inflation sous-jacente est presque parfaitement corrélée l’évolution de l’inflation. Dans ce cas, l’inflation sous-jacente est un prédicteur non biaisé de l’inflation future à un an qui vérifie le critère d’absence de biais de Holden et Peel (1990) :

\[
E(\pi_t) = \pi_{t-12}^*
\] (4.7)

Si \(\beta = 1 \), l’inflation sous-jacente au temps de \(t - 12 \) mois évolue comme le taux d’inflation actuel et le biais \(\alpha \) est constant.

L’indice qui passe ce test possède certainement un bon pouvoir de prédiction de l’évolution de l’inflation un an à l’avance.

Troisièmement, les \(R^2 \) de cette régression indiquent directement la variance de l’inflation actuelle expliquée par l’inflation sous-jacente passée.
Chapitre 4: Évaluation de la performance des indices d’inflation sous-jacente

Quatrièmement, cette régression permet de réaliser des prévisions intra-échantillon de l’inflation afin de calculer les erreurs de prévisions et divers indicateurs relatifs à ces erreurs de prévision tels que le Root Mean Square Error (RMSE). Cet indicateur peut donc constituer un élément de comparaison des pouvoirs prédictifs des indices d’inflation sous-jacente. Plus le RMSE est faible, plus la prévision est précise, et plus l’indice d’inflation sous-jacente est prédictif.

Ces informations sont considérées comme des critères de comparaison de la capacité prédictive de notre mesure de l’inflation sous-jacente. Un indice d’inflation sous-jacente doit d’abord vérifier les deux premier critères : $\beta \neq 0$ puis $(\alpha, \beta) = (0; 1)$. Ensuite, les pouvoirs prédictifs des indices sont comparés à travers la comparaison des R^2 et des RMSEs. L’indice ayant le R^2 le plus élevé et/ou le RMSE le plus faible est l’indice le plus prédictif.

Il faut noter que le facteur clé de cette approche est le choix de l’indice de référence pour l’inflation observée (π_t). Dans l’étude de Bryan et Cecchetti, le Benchmark utilisé est l’indice des moyennes mobiles centrées sur 36 mois de l’inflation observée. Dans le cas du Vietnam, nous choisissons l’inflation observée elle-même comme benchmark car c’est l’indice de l’inflation observée qui est l’objet principal et final de notre prévision. Il faut noter que lors de l’application de ce modèle au cas du Vietnam, nous avons fait un ajustement pour qu’il soit davantage en phase avec la pratique du Vietnam. Cet ajustement consiste à ne pas faire toutes les analyses économétriques avec la valeur décalée de 12 mois de l’indicateur d’inflation sous-jacente (π^*_{t-12}).

Le modèle proposé par Cogley (2002) est le suivant :

$$(\pi_{t+h} - \pi_t) = \alpha + \beta(\pi^*_t - \pi_t) + u_t$$ (4.8)

Le côté gauche de l’équation est la différence entre l’inflation au temps t et l’inflation au temps $t + h$. Le côté droit de l’équation se compose de la
différence entre l’inflation observée et l’inflation sous-jacente au temps t.

En d’autres termes, si ce phénomène de convergence a lieu, nous devrons observer une corrélation positive entre $(\pi_{t+h} - \pi_t)$ et $(\pi_t^* - \pi_t)$, soit encore une valeur de β positive et significative :

- Si $\pi_t^* - \pi_t > 0 \Rightarrow \pi_{t+h} - \pi_t > 0$
- Si $\pi_t^* - \pi_t < 0 \Rightarrow \pi_{t+h} - \pi_t < 0$

Lors de l’estimation de ce modèle dans le cas du Vietnam, nous espérons obtenir $\beta \neq 0$ et $\beta > 0$ pour différentes valeurs de h.

Les informations obtenues à l’issue de l’estimation de ces deux équations de test vont dans le même sens, ce qui facilite la comparaison entre nos indices de l’inflation sous-jacente.

Les résultats du test développé par Bryan et Cecchetti sont reportés dans le tableau 29 suivant:
Tableau 29: RÉSULTAT DU TEST DE BRYAN ET CECCHETTI

<table>
<thead>
<tr>
<th>Indice</th>
<th>Ho: $\alpha = 0$, $\beta = 1$</th>
<th>$\beta \neq 0$</th>
<th>RMSE</th>
<th>R^2</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>WTM36</td>
<td>$P.\text{Value} = 0.1837$</td>
<td>Ok</td>
<td>0.2057</td>
<td>0.97</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Accepter Ho avec $h = {1,2,3}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXP</td>
<td>$P.\text{Value} = 0.1381$</td>
<td>Ok</td>
<td>0.2152</td>
<td>0.97</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Accepter Ho avec $h = {1,2}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COREUCM</td>
<td>$P.\text{Value} = 0.3416$</td>
<td>Ok</td>
<td>0.2630</td>
<td>0.87</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Accepter Ho avec $h = {1}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WTM315</td>
<td>$P.\text{Value} = 0.2323$</td>
<td>Ok</td>
<td>0.2667</td>
<td>0.97</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Accepter Ho avec $h = {1,2,3}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WTM1015</td>
<td>$P.\text{Value} = 0.3107$</td>
<td>Ok</td>
<td>0.2988</td>
<td>0.97</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Accepter Ho avec $h = {1,2,3}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WTM1515</td>
<td>$P.\text{Value} = 0.1473$</td>
<td>Ok</td>
<td>0.3537</td>
<td>0.97</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Accepter Ho avec $h = {1,2,3}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXPFT</td>
<td>$P.\text{Value} = 0.2009$</td>
<td>Ok</td>
<td>0.6895</td>
<td>0.97</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Accepter Ho avec $h = {1,2,5}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXF</td>
<td>$P.\text{Value} = 0.1716$</td>
<td>Ok</td>
<td>0.8392</td>
<td>0.94</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Accepter Ho avec $h = {1,2,4}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXHPFS</td>
<td>$P.\text{Value} = 0.1114$</td>
<td>Ok</td>
<td>0.8684</td>
<td>0.95</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Accepter Ho avec $h = {1,2,5}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXPF</td>
<td>$P.\text{Value} = 0.1203$</td>
<td>Ok</td>
<td>0.8776</td>
<td>0.95</td>
<td>10</td>
</tr>
</tbody>
</table>

68 Voir les abréviations dans l’annexe 4 à la fin de ce chapitre.
Chapitre 4: Évaluation de la performance des indices d’inflation sous-jacente

1. Les régressions sont estimées pour la même période, allant de 2009 :01 à 2012 :06.
2. Les RMSEs sont calculés pour la même période, allant de 2009 :01 à 2012 :06.

En suivant la procédure proposée par Bryan et Cecchetti nous classons nos indices d’inflation sous-jacente dans l’ordre décroissant d’importance de leur capacité prédictive (cela est noté dans la dernière colonne du Tableau 29 ci-dessus). Les résultats présentés dans le Tableau 29 suggèrent les commentaires suivants.

+ Par la comparaison entre les RMSEs, les indices peuvent être répartis en deux groupes. À l’intérieur de chaque groupe, les indices ont un pouvoir prédictif équivalent. Les résultats sont reportés dans le Tableau 30 suivant:
Tableau 30: CAPACITÉ PRÉDICTIVE

<table>
<thead>
<tr>
<th>Groupe 1</th>
<th>COREUCM 69</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EXP</td>
</tr>
<tr>
<td></td>
<td>WTM36</td>
</tr>
<tr>
<td></td>
<td>WTM315</td>
</tr>
<tr>
<td></td>
<td>WTM1015</td>
</tr>
<tr>
<td></td>
<td>WTM1515</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Groupe 2</th>
<th>EXF</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EXPF</td>
</tr>
<tr>
<td></td>
<td>EXPFT</td>
</tr>
<tr>
<td></td>
<td>EXHPFS</td>
</tr>
</tbody>
</table>

Enfin, nous effectuons un test d’enveloppement des prévisions en vue d’une éventuelle combinaison des prévisions. Ce test est basé sur la régression suivante:

\[\pi_{t+h} = \lambda + \lambda_1 \pi^{*}_t + \lambda_2 \pi^{*}_t + u_t \quad (4.9) \]

Où \(\pi^{*}_t \) et \(\pi^{*}_t \) sont deux indices d’inflation sous-jacent distincts. Si \((\lambda_1, \lambda_2) = (1,0) \) l’indice \(\pi^{*}_t \) enveloppe l’indice \(\pi^{*}_t \). Dans ce cas, toute l’information prédictive contenue dans l’indice \(\pi^{*}_t \) est également contenue dans l’indice \(\pi^{*}_t \). Le cas inverse correspond à \((\lambda_1, \lambda_2) = (0,1) \). Enfin si ces deux hypothèses sont rejetées et si \(\lambda_1 \neq 0 \) et \(\lambda_2 \neq 0 \), les deux indices peuvent être combinés pour former un indice plus prédictif. Les résultats indiquent qu’aucun des indices n’enveloppe l’indice COREUCM dans la prévision de l’inflation observée. Ce résultat indique la grande capacité de prévision de

69 Voir les abréviations dans l’annexe 4 à la fin de ce chapitre.
Chapitre 4: Évaluation de la performance des indices d’inflation sous-jacentes

l’indice COREUCM. Le détail des résultats est reporté dans le tableau 31 suivant.

Tableau 31: TESTS D’ENVELOPPEMENT POUR UNE COMBINAISON DE PRÉVISION

<table>
<thead>
<tr>
<th>Indice</th>
<th>$H_0: F_1$ envellope F_2</th>
<th>$H_0: F_2$ enveloppe F_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_1: COREUCM</td>
<td>P.Value 0.7766</td>
<td>P.Value 0.0074</td>
</tr>
<tr>
<td>F_2: WTM1515</td>
<td>Accepter H_0</td>
<td>Rejeter H_0</td>
</tr>
<tr>
<td>F_1: COREUCM</td>
<td>P.Value 0.8596</td>
<td>P.Value 0.0223</td>
</tr>
<tr>
<td>F_2: WTM1015</td>
<td>Accepter H_0</td>
<td>Rejeter H_0</td>
</tr>
<tr>
<td>F_1: COREUCM</td>
<td>P.Value 0.8706</td>
<td>P.Value 0.0406</td>
</tr>
<tr>
<td>F_2: WTM315</td>
<td>Accepter H_0</td>
<td>Rejeter H_0</td>
</tr>
<tr>
<td>F_1: COREUCM</td>
<td>P.Value 0.8901</td>
<td>P.Value 0.0455</td>
</tr>
<tr>
<td>F_2: WTM36</td>
<td>Accepter H_0</td>
<td>Rejeter H_0</td>
</tr>
<tr>
<td>F_1: COREUCM</td>
<td>P.Value 0.92516</td>
<td>P.Value 0.0866</td>
</tr>
<tr>
<td>F_2: EXP</td>
<td>Accepter H_0</td>
<td>Accepter H_0</td>
</tr>
<tr>
<td>F_1: COREUCM</td>
<td>P.Value 0.7013</td>
<td>P.Value 0.0000</td>
</tr>
<tr>
<td>F_2: EXF</td>
<td>Accepter H_0</td>
<td>Rejeter H_0</td>
</tr>
<tr>
<td>F_1: COREUCM</td>
<td>P.Value 0.7422</td>
<td>P.Value 0.0000</td>
</tr>
<tr>
<td>F_2: $EXPF$</td>
<td>Accepter H_0</td>
<td>Rejeter H_0</td>
</tr>
<tr>
<td>F_1: COREUCM</td>
<td>P.Value 0.4194</td>
<td>P.Value 0.0000</td>
</tr>
</tbody>
</table>

70 Voir les abréviations dans l’annexe 4 à la fin de ce chapitre.
Les informations fournies par le méthode de Cogley confirmé le résultat obtenus dans l’analyse précédente : parmi notre série d’indices, l’indice UCM semble être le plus performant. Les informations contenues dans cet indice sont donc très utiles et semblent nous permettre de prévoir à l’avance les évolutions de l’inflation pour une période d’environ 12 à 13 mois consécutifs (β est toujours significatif avec $h = \{1, 2, \ldots, 13\}$). Les indices EXP, WTM36, WTM1015, WTM315 et WTM1515 se positionnent en deuxième rang dans ce sens. Leurs pouvoirs prédictif sont élevés pour des périodes de 3 à 5 mois consécutifs. Les indices EXF, EXHPFS, EXPFT et EXPF sont toujours les moins prédicifs.

<table>
<thead>
<tr>
<th>F_2: EXPFT</th>
<th>Accepter Ho</th>
<th>Rejeter Ho</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_1: COREUCM</td>
<td>P. Value 0.7487</td>
<td>P. Value 0.0000</td>
</tr>
<tr>
<td>F_2: EXHFPS</td>
<td>Accepter Ho</td>
<td>Rejeter Ho</td>
</tr>
</tbody>
</table>
Tableau 32: RÉSULTAT DU TEST DE COGLEY

<table>
<thead>
<tr>
<th></th>
<th>$h = 1$</th>
<th>$h = 2$</th>
<th>$h = 3$</th>
<th>$h = 4$</th>
<th>$h = 5$</th>
<th>$h = 6$</th>
<th>$h = 7$</th>
<th>$h = 8$</th>
<th>$h = 9$</th>
<th>$h = 10$</th>
<th>$h = 11$</th>
<th>$h = 12$</th>
<th>$h = 13$</th>
<th>$h = 14$</th>
<th>$h = 15$</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXHPFS</td>
<td></td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>EXP</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>EXPF</td>
<td></td>
<td></td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>EXPFT</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>EXF</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>WTM1515</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>WTM36</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>WTM315</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>WTM1015</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>COREUCM</td>
<td>✔</td>
<td></td>
</tr>
</tbody>
</table>

71 Voir les abréviations dans l’annexe 4 à la fin de ce chapitre.
D’autre part, nos résultats montrent également que l’inflation observée semble converger fortement vers l’indice d’inflation sous-jacente COREUCM dans un délai maximum de 12 à 13 mois. Dans le cas de l’indice EXHPFS, la convergence n’apparaît qu’après 9 mois au minimum. La forte convergence dans un délai défini de l’inflation favorise donc la prévision de l’inflation ainsi que la construction de la stratégie de politique monétaire.

4. Conclusion

Il apparaît que l’indice COREUCM est l’indice d’inflation sous-jacente le plus performant de notre étude dans le rôle d’indice prédictif de l’inflation. Cet indice COREUCM répond donc bien à nos attentes et surpasse tous les autres indices. Nous proposons cet indice comme le candidat prioritaire pour les modèles de prévision de l’inflation pour le Vietnam. En plus de cet indice COREUCM, nous suggérons également l’utilisation d’indices complémentaires tels que les indices EXP, WTM36, WTM315, WTM1015, WTM1515, EXHPFS, EXF, EXPF et EXPFT. Comme chacune de ces mesures de l’inflation sous-jacente contient également des informations particulières concernant l’évolution de l’inflation observée, il est plutôt préférable d’utiliser un groupe de mesures plutôt qu’un seul indice d’inflation sous-jacente. Cela permet d’exploiter des informations variées qui sont contenus dans ces mesures pour établir une prévision plus précise du futur de l’inflation. En outre, tous nos indices possèdent un plus ou moins bon pouvoir prédictif – comme cela a été illustré dans les analyses précédentes.

L’approche statistique s’avère être souvent efficace car elle fournit neuf des dix indices satisfaisants. Les trois modèles économétriques estimés ne fournissent par contre qu’un seul indice satisfaisant. Enfin, la méthode de la moyenne tronquée donne le jeu des indices les plus prédictifs.
Une dernière remarque concernant cette analyse concerne le fait que parmi les 11 indices, l’indice d’EXP mérite d’être classé au premier rang. Cet indice est construit en neutralisant l’influence du sous-indice de prix POST. Le calcul de cet indice est très simple à comprendre, à effectuer et à interpréter. Il n’exclue pas beaucoup de composantes de l’IPC. Les raisons de l’exclusion de la composante POST sont faciles à comprendre : le prix des produits dans le groupe POST suit une direction individuelle qui est complètement indépendant de la tendance d’augmentation commune des autres prix dans l’économie. Du fait de sa simplicité, il est de plus envisageable que cet indice soit facilement accepté par le grand public comme un indice de référence de l’inflation. Cet indice possède donc une double fonction : prédiction d’inflation et inflation de référence.
Annexe 5: LES ABRÉVIATIONS DES INDICES D’INFLATION SOUS-JACENTE

<table>
<thead>
<tr>
<th>ABRÉVIATION</th>
<th>DÉFINITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXT</td>
<td>L’indice d’inflation sous-jacente mesurée par la méthode d’exclusion dont exclu le prix du groupe TRANS.</td>
</tr>
<tr>
<td>EXHP</td>
<td>L’indice d’inflation sous-jacente mesurée par la méthode d’exclusion dont exclu le prix du groupe HEALTH et le prix du groupe POST.</td>
</tr>
<tr>
<td>EXHPFS</td>
<td>L’indice d’inflation sous-jacente mesurée par la méthode d’exclusion dont exclu le prix du groupe HEALTH, le prix du groupe POST et le prix du groupe FOODSTUFF.</td>
</tr>
<tr>
<td>EXH</td>
<td>L’indice d’inflation sous-jacente mesurée par la méthode d’exclusion dont exclu le prix du groupe HEALTH.</td>
</tr>
<tr>
<td>EXPO</td>
<td>L’indice d’inflation sous-jacente mesurée par la méthode d’exclusion dont exclu le prix du groupe POST.</td>
</tr>
<tr>
<td>EXPF</td>
<td>L’indice d’inflation sous-jacente mesurée par la méthode d’exclusion dont exclu le prix du groupe POST et le prix du groupe FOOD.</td>
</tr>
<tr>
<td>EXPFTH</td>
<td>L’indice d’inflation sous-jacente mesurée par la méthode d’exclusion dont exclu le prix du groupe POST, le prix du groupe FOOD, le prix du groupe TRANS et le prix du groupe HEALTH.</td>
</tr>
<tr>
<td>EXF</td>
<td>L’indice d’inflation sous-jacente mesurée par la méthode d’exclusion dont exclu le prix du groupe FOOD.</td>
</tr>
<tr>
<td>WTM36</td>
<td>L’indice d’inflation sous-jacente mesurée par la moyenne tronquée dont le taux de troncature est de 3% dans la queue de gauche et de 6% dans la queue de droite de la distribution.</td>
</tr>
<tr>
<td>WTM315</td>
<td>L’indice d’inflation sous-jacente mesurée par la moyenne tronquée dont le taux de troncature est de 3% dans la queue de gauche et de 15% dans la queue de droite de la distribution.</td>
</tr>
<tr>
<td>WTM325</td>
<td>L’indice d’inflation sous-jacente mesurée par la moyenne tronquée dont le taux de troncature est de 3% dans la queue de gauche et de 15% dans la queue de droite de la distribution.</td>
</tr>
<tr>
<td>WTM1010</td>
<td>L’indice d’inflation sous-jacente mesurée par la moyenne tronquée dont le taux de troncature est de 10% dans la queue de gauche et de 10% dans la queue de droite de la distribution.</td>
</tr>
</tbody>
</table>
Chapitre 4: Évaluation de la performance des indices d’inflation sous-jacents

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WTM1515</td>
<td>L’indice d’inflation sous-jacente mesuré par la moyenne tronquée dont le taux de troncature est de 15% dans la queue de gauche et de 15% dans la queue de droite de la distribution.</td>
</tr>
<tr>
<td>WTM1015</td>
<td>L’indice d’inflation sous-jacente mesuré par la moyenne tronquée dont le taux de troncature est de 10% dans la queue de gauche et de 15% dans la queue de droite de la distribution.</td>
</tr>
<tr>
<td>DOWN</td>
<td>L’indice d’inflation sous-jacente mesuré par la méthode de pondération réduite</td>
</tr>
<tr>
<td>WMEDIAN</td>
<td>L’indice d’inflation sous-jacente mesuré par la médiane pondérée</td>
</tr>
<tr>
<td>CORESVAR</td>
<td>L’indice d’inflation sous-jacente mesuré par le modèle SVAR</td>
</tr>
<tr>
<td>COREUCM</td>
<td>L’indice d’inflation sous-jacente mesuré par le modèle à composantes non observées</td>
</tr>
<tr>
<td>DFI</td>
<td>L’indice d’inflation sous-jacente mesuré par le modèle à facteur dynamique</td>
</tr>
<tr>
<td>CORECMT</td>
<td>L’indice d’inflation sous-jacente mesuré par le modèle à tendances communes</td>
</tr>
</tbody>
</table>
Annexe 6: VÉRIFIER LE PREMIER CRITÈRE

Cette annexe présente en détail des tests de cointégration pour tous les indices d’inflation sous-jacente.

- Vérifier si π_t et π_t^* sont – ils $I(1)$ avec le test de Dickey fuller augmenté. Les résultats sont reportés dans le Tableau 33 suivant.

Tableau 33: TESTS DE DICKEY FULLER AUGMENTÉ

<table>
<thead>
<tr>
<th>H0: EXT est non stationnaire</th>
<th>H0: EXT est non stationnaire en première différence</th>
<th>EXT ~ I(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistique T</td>
<td>P.Value</td>
<td>Statistique T</td>
</tr>
<tr>
<td>-1.150880</td>
<td>0.2247</td>
<td>-2.745032</td>
</tr>
<tr>
<td>1%</td>
<td>-2.607686</td>
<td>1%</td>
</tr>
<tr>
<td>5%</td>
<td>-1.946878</td>
<td>5%</td>
</tr>
<tr>
<td>10%</td>
<td>-1.612999</td>
<td>10%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>H0: EXHP est non stationnaire</th>
<th>H0: EXHP est non stationnaire en première différence</th>
<th>EXHP ~ I(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistique T</td>
<td>P.Value</td>
<td>Statistique T</td>
</tr>
<tr>
<td>-1.204761</td>
<td>0.2064</td>
<td>-2.790655</td>
</tr>
<tr>
<td>1%</td>
<td>-2.607686</td>
<td>1%</td>
</tr>
<tr>
<td>5%</td>
<td>-1.946878</td>
<td>5%</td>
</tr>
<tr>
<td>10%</td>
<td>-1.612999</td>
<td>10%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>H0: EXHPFS est non stationnaire au niveau</th>
<th>H0: EXHPFS est non stationnaire en première différence</th>
<th>EXHPFS ~ I(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistique T</td>
<td>P.Value</td>
<td>Statistique T</td>
</tr>
<tr>
<td>-0.818848</td>
<td>0.3566</td>
<td>-3.099151</td>
</tr>
<tr>
<td></td>
<td>Statistique T</td>
<td>P.Value</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>H0: EXH est non stationnaire au niveau</td>
<td>-1.211832</td>
<td>0.2041</td>
</tr>
<tr>
<td>H0: EXH est non stationnaire en première différence</td>
<td>EXP ~ I(1)</td>
<td></td>
</tr>
<tr>
<td>1%</td>
<td>-2.607686</td>
<td>1%</td>
</tr>
<tr>
<td>5%</td>
<td>-1.946878</td>
<td>5%</td>
</tr>
<tr>
<td>10%</td>
<td>-1.612999</td>
<td>10%</td>
</tr>
<tr>
<td>H0: EXP est non stationnaire au niveau</td>
<td>-1.200645</td>
<td>0.2078</td>
</tr>
<tr>
<td>H0: EXP est non stationnaire en première différence</td>
<td>EXP ~ I(1)</td>
<td></td>
</tr>
<tr>
<td>1%</td>
<td>-2.607686</td>
<td>1%</td>
</tr>
<tr>
<td>5%</td>
<td>-1.946878</td>
<td>5%</td>
</tr>
<tr>
<td>10%</td>
<td>-1.612999</td>
<td>10%</td>
</tr>
<tr>
<td>H0: EXPF est non stationnaire au niveau</td>
<td>-1.234055</td>
<td>0.1969</td>
</tr>
<tr>
<td>H0: EXPF est non stationnaire en première différence</td>
<td>EXPF ~ I(1)</td>
<td></td>
</tr>
<tr>
<td>1%</td>
<td>-2.607686</td>
<td>1%</td>
</tr>
<tr>
<td>5%</td>
<td>-1.946878</td>
<td>5%</td>
</tr>
<tr>
<td>10%</td>
<td>-1.612999</td>
<td>10%</td>
</tr>
<tr>
<td>H0: EXPFT est non stationnaire au niveau</td>
<td>-1.236433</td>
<td>0.1961</td>
</tr>
<tr>
<td>H0: EXPFT est non stationnaire en première différence</td>
<td>EXPFT ~ I(1)</td>
<td></td>
</tr>
<tr>
<td>1%</td>
<td>-2.607686</td>
<td>1%</td>
</tr>
<tr>
<td>5%</td>
<td>-1.946878</td>
<td>5%</td>
</tr>
</tbody>
</table>
Chapitre 4: Évaluation de la performance des indices d’inflation sous-jacente

<table>
<thead>
<tr>
<th>10%</th>
<th>-1.612999</th>
<th>10%</th>
<th>-1.612999</th>
</tr>
</thead>
<tbody>
<tr>
<td>H0: EXPFTH est non stationnaire au niveau</td>
<td>H0: EXPFTH est non stationnaire en première différence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Statistique T</td>
<td>P.Value</td>
<td>Statistique T</td>
<td>P.Value</td>
</tr>
<tr>
<td>-1.220911</td>
<td>0.2011</td>
<td>-2.806762</td>
<td>0.0058</td>
</tr>
<tr>
<td>1%</td>
<td>-2.607686</td>
<td>1%</td>
<td>-2.607686</td>
</tr>
<tr>
<td>5%</td>
<td>-1.946878</td>
<td>5%</td>
<td>-1.946878</td>
</tr>
<tr>
<td>10%</td>
<td>-1.612999</td>
<td>10%</td>
<td>-1.612999</td>
</tr>
</tbody>
</table>

1%	-2.607686	1%	-2.607686
5%	-1.946878	5%	-1.946878
10%	-1.612999	10%	-1.612999

1%	-2.607686	1%	-2.607686
5%	-1.946878	5%	-1.946878
10%	-1.612999	10%	-1.612999

1%	-2.607686	1%	-2.607686
5%	-1.946878	5%	-1.946878
10%	-1.612999	10%	-1.612999

1%	-2.607686	1%	-2.607686
5%	-1.946878	5%	-1.946878
10%	-1.612999	10%	-1.612999

1%	-2.607686	1%	-2.607686
5%	-1.946878	5%	-1.946878
10%	-1.612999	10%	-1.612999

| 1% | -2.609324 | 1% | -2.609324 |
| 5% | -1.947119 | 5% | -1.947119 |

| 1% | -2.609324 | 1% | -2.609324 |
| 5% | -1.947119 | 5% | -1.947119 |

| 1% | -2.609324 | 1% | -2.609324 |
| 5% | -1.947119 | 5% | -1.947119 |

| 1% | -2.609324 | 1% | -2.609324 |
| 5% | -1.947119 | 5% | -1.947119 |

| 1% | -2.609324 | 1% | -2.609324 |
| 5% | -1.947119 | 5% | -1.947119 |

| 1% | -2.609324 | 1% | -2.609324 |
| 5% | -1.947119 | 5% | -1.947119 |

| 1% | -2.609324 | 1% | -2.609324 |
| 5% | -1.947119 | 5% | -1.947119 |

| 1% | -2.609324 | 1% | -2.609324 |
| 5% | -1.947119 | 5% | -1.947119 |

| 1% | -2.609324 | 1% | -2.609324 |
| 5% | -1.947119 | 5% | -1.947119 |
Chapitre 4: Évaluation de la performance des indices d’inflation sous-jacente

Le tableau 33 présente les résultats des tests de Dickey Fuller Augmenté pour tous les indices d’inflation sous-jacente. Ces indices ne sont pas stationnaires au niveau mais sont stationnaires en première différence. On peut conclure que tous les indices d’inflation sous-jacente dans notre cas sont bien caractérisés comme un processus intégré de l’ordre 1.

- Tester l’existence de relation de cointégration entre l’inflation observée et l’inflation sous-jacente

Tableau 34: TESTS DE COINTÉGRATION ENTRE L’INFLATION OBSERVÉE ET L’INFLATION SOUS-JACENTE

<table>
<thead>
<tr>
<th>Test de cointégration entre : INF et EXT</th>
<th>Statistique T</th>
<th>-3.64337</th>
<th>Cointégration au seuil de 1%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1%</td>
<td>5%</td>
<td>10%</td>
</tr>
<tr>
<td></td>
<td>-2.60554</td>
<td>-1.94667</td>
<td>-1.61895</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Test de cointégration entre : INF et EXHP</th>
<th>Statistique T</th>
<th>-2.71644</th>
<th>Cointégration au seuil de 1%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1%</td>
<td>5%</td>
<td>10%</td>
</tr>
<tr>
<td></td>
<td>-2.60</td>
<td>-1.94</td>
<td>-1.61</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Test de cointégration entre : INF et EXHPFS</th>
<th>Statistique T</th>
<th>-3.23640</th>
<th>Cointégration au seuil de 10%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1%</td>
<td>5%</td>
<td>10%</td>
</tr>
<tr>
<td></td>
<td>-4.14</td>
<td>-3.50</td>
<td>-3.17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Test de cointégration entre : INF et EXH</th>
<th>Statistique T</th>
<th>-3.00601</th>
<th>Cointégration au seuil de 1%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1%</td>
<td>5%</td>
<td>10%</td>
</tr>
<tr>
<td></td>
<td>-2.60</td>
<td>-1.94</td>
<td>-1.61</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Test de cointégration entre : INF et EXP</th>
<th>Statistique T</th>
<th>-2.64017</th>
<th>Cointégration au seuil de 1%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1%</td>
<td>5%</td>
<td>10%</td>
</tr>
</tbody>
</table>
Chapitre 4: Évaluation de la performance des indices d’inflation sous-jacente

<table>
<thead>
<tr>
<th>Test de cointégration entre : INF et EXPF</th>
<th>Statistique T</th>
<th>-3.32987</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cointégration au seuil de 1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1%</td>
<td>5%</td>
<td>10%</td>
</tr>
<tr>
<td>-2.61</td>
<td>-1.94</td>
<td>-1.61</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Test de cointégration entre : INF et EXPFT</th>
<th>Statistique T</th>
<th>-2.31166</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cointégration au seuil de 5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1%</td>
<td>5%</td>
<td>10%</td>
</tr>
<tr>
<td>-2.60</td>
<td>-1.94</td>
<td>-1.61</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Test de cointégration entre : INF et EXF</th>
<th>Statistique T</th>
<th>-2.72356</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cointégration au seuil de 1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1%</td>
<td>5%</td>
<td>10%</td>
</tr>
<tr>
<td>-2.60</td>
<td>-1.94</td>
<td>-1.61</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Test de cointégration entre : INF et WTM36</th>
<th>Statistique T</th>
<th>-3.96716</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cointégration au seuil de 5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1%</td>
<td>5%</td>
<td>10%</td>
</tr>
<tr>
<td>-4.13</td>
<td>-3.49</td>
<td>-3.17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Test de cointégration entre : INF et WTM315</th>
<th>Statistique T</th>
<th>-1.97024</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cointégration au seuil de 5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1%</td>
<td>5%</td>
<td>10%</td>
</tr>
<tr>
<td>-2.60</td>
<td>-1.94</td>
<td>-1.61</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Test de cointégration entre : INF et WTM325</th>
<th>Statistique T</th>
<th>-1.07843</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non cointégration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1%</td>
<td>5%</td>
<td>10%</td>
</tr>
<tr>
<td>-2.60</td>
<td>-1.94</td>
<td>-1.61</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Test de cointégration entre : INF et WTM1010</th>
<th>Statistique T</th>
<th>-5.50478</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cointégration au seuil de 1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1%</td>
<td>5%</td>
<td>10%</td>
</tr>
</tbody>
</table>
Chapitre 4: Évaluation de la performance des indices d’inflation sous-jacents

<table>
<thead>
<tr>
<th>Test de cointégration entre : INF et WTM1515</th>
<th>Statistique T</th>
<th>Cointégration au seuil de 1%</th>
</tr>
</thead>
<tbody>
<tr>
<td>INF et WTM1515</td>
<td>-5.86607</td>
<td></td>
</tr>
<tr>
<td>1%</td>
<td>5%</td>
<td>10%</td>
</tr>
<tr>
<td>-4.12</td>
<td>-3.49</td>
<td>-3.17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Test de cointégration entre : INF et WTM1015</th>
<th>Statistique T</th>
<th>Cointégration au seuil de 1%</th>
</tr>
</thead>
<tbody>
<tr>
<td>INF et WTM1015</td>
<td>-6.18318</td>
<td></td>
</tr>
<tr>
<td>1%</td>
<td>5%</td>
<td>10%</td>
</tr>
<tr>
<td>-4.12</td>
<td>-3.49</td>
<td>-3.17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Test de cointégration entre : INF et DOWN</th>
<th>Statistique T</th>
<th>Non cointégration</th>
</tr>
</thead>
<tbody>
<tr>
<td>INF et DOWN</td>
<td>-0.84864</td>
<td></td>
</tr>
<tr>
<td>1%</td>
<td>5%</td>
<td>10%</td>
</tr>
<tr>
<td>-2.59</td>
<td>-1.94</td>
<td>-1.61</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Test de cointégration entre : INF et WMEDIAN</th>
<th>Statistique T</th>
<th>Non cointégration</th>
</tr>
</thead>
<tbody>
<tr>
<td>INF et WMEDIAN</td>
<td>-0.84864</td>
<td></td>
</tr>
<tr>
<td>1%</td>
<td>5%</td>
<td>10%</td>
</tr>
<tr>
<td>-2.59</td>
<td>-1.94</td>
<td>-1.61</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Test de cointégration entre : INF et CORESVAR</th>
<th>Statistique T</th>
<th>Cointégration au seuil de 1%</th>
</tr>
</thead>
<tbody>
<tr>
<td>INF et CORESVAR</td>
<td>-2.58933</td>
<td></td>
</tr>
<tr>
<td>1%</td>
<td>5%</td>
<td>10%</td>
</tr>
<tr>
<td>-2.57</td>
<td>-1.94</td>
<td>-1.61</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Test de cointégration entre : INF et COREUCM</th>
<th>Statistique T</th>
<th>Cointégration au seuil de 1%</th>
</tr>
</thead>
<tbody>
<tr>
<td>INF et COREUCM</td>
<td>-2.97766</td>
<td></td>
</tr>
<tr>
<td>1%</td>
<td>5%</td>
<td>10%</td>
</tr>
<tr>
<td>-2.58</td>
<td>-1.94</td>
<td>-1.61</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Test de cointégration entre : INF et COREUCM</th>
<th>Statistique T</th>
<th>Cointégration au seuil de 1%</th>
</tr>
</thead>
<tbody>
<tr>
<td>INF et COREUCM</td>
<td>-2.97766</td>
<td></td>
</tr>
<tr>
<td>1%</td>
<td>5%</td>
<td>10%</td>
</tr>
<tr>
<td>-2.58</td>
<td>-1.94</td>
<td>-1.61</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Test de cointégration entre : INF et DFI</th>
<th>Statistique T</th>
<th>Cointégration au seuil de 1%</th>
</tr>
</thead>
<tbody>
<tr>
<td>INF et DFI</td>
<td>-3.00327</td>
<td></td>
</tr>
<tr>
<td>1%</td>
<td>5%</td>
<td>10%</td>
</tr>
</tbody>
</table>
Chapitre 4: Évaluation de la performance des indices d’inflation sous-jacente

<table>
<thead>
<tr>
<th>-2.59</th>
<th>-1.94</th>
<th>-1.61</th>
</tr>
</thead>
</table>

Test de cointégration entre : INF et CMT

<table>
<thead>
<tr>
<th>Statistique T</th>
<th>-4.01950</th>
<th>Cointégration au seuil de 1%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1%</td>
<td>-4.00</td>
<td>-3.43</td>
</tr>
<tr>
<td>5%</td>
<td>-3.43</td>
<td>-3.14</td>
</tr>
<tr>
<td>10%</td>
<td>-3.14</td>
<td></td>
</tr>
</tbody>
</table>

Tous les indices d’inflation sous-jacente sont dans une relation de cointégration avec l’inflation observée à l’exception de l’indice WTM325, l’indice WMEDIAN et l’indice DOWN.
Tableau 35: LA CAPACITÉ EXPLICATIVE DE L’INFLATION SOUS-JACENTE POUR L’INFLATION OBSERVÉE

<table>
<thead>
<tr>
<th>Indice</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXT</td>
<td>99%</td>
</tr>
<tr>
<td>EXHP</td>
<td>96%</td>
</tr>
<tr>
<td>EXHPFS</td>
<td>94%</td>
</tr>
<tr>
<td>EXH</td>
<td>97%</td>
</tr>
<tr>
<td>EXP</td>
<td>99%</td>
</tr>
<tr>
<td>EXPF</td>
<td>86%</td>
</tr>
<tr>
<td>EXPFT</td>
<td>81%</td>
</tr>
<tr>
<td>EXPFTH</td>
<td>93%</td>
</tr>
<tr>
<td>EXF</td>
<td>86%</td>
</tr>
<tr>
<td>WTM36</td>
<td>97%</td>
</tr>
<tr>
<td>WTM315</td>
<td>95%</td>
</tr>
<tr>
<td>WTM325</td>
<td>93%</td>
</tr>
<tr>
<td>WTM1010</td>
<td>97%</td>
</tr>
<tr>
<td>WTM1515</td>
<td>96%</td>
</tr>
<tr>
<td>WTM1015</td>
<td>96%</td>
</tr>
<tr>
<td>DOWN</td>
<td>93%</td>
</tr>
<tr>
<td>WMEDIAN</td>
<td>93%</td>
</tr>
<tr>
<td>CORESVAR</td>
<td>93%</td>
</tr>
<tr>
<td>COREUCM</td>
<td>91%</td>
</tr>
<tr>
<td>DFI</td>
<td>86%</td>
</tr>
<tr>
<td>CORECMT</td>
<td>86%</td>
</tr>
</tbody>
</table>
Annexe 7: VÉRIFIER LE DEUXIÈME CRITÈRE

<table>
<thead>
<tr>
<th>Indice</th>
<th>$H_0: \lambda_1 = 0$</th>
<th>$H_0: \lambda_2 = 0$</th>
<th>$\lambda_1 < 0$</th>
<th>Satisfait</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXT</td>
<td>P.Value 0.0109</td>
<td>P.Value 0.0949</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nombre de retards : 3</td>
<td>Nombre de retards : 3</td>
<td>Ok</td>
<td>Non</td>
</tr>
<tr>
<td></td>
<td>Rejeter Ho</td>
<td>Rejeter Ho</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXHP</td>
<td>P.Value 0.8025</td>
<td>P.Value 0.8985</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nombre de retards : 3</td>
<td>Nombre de retards : 3</td>
<td>Ok</td>
<td>Non</td>
</tr>
<tr>
<td></td>
<td>Accepter Ho</td>
<td>Accepter Ho</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXHPFS</td>
<td>P.Value 0.0421</td>
<td>P.Value 0.2408</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nombre de retards : 4</td>
<td>Nombre de retards : 4</td>
<td>Ok</td>
<td>Ok</td>
</tr>
<tr>
<td></td>
<td>Rejeter Ho</td>
<td>Accepter Ho</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXH</td>
<td>P.Value 0.9547</td>
<td>P.Value 0.7185</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nombre de retards : 4</td>
<td>Nombre de retards : 4</td>
<td>Ok</td>
<td>Non</td>
</tr>
<tr>
<td></td>
<td>Accepter Ho</td>
<td>Accepter Ho</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXPO</td>
<td>P.Value 0.0165</td>
<td>P.Value 0.2184</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nombre de retards : 3</td>
<td>Nombre de retards : 2</td>
<td>Ok</td>
<td>Ok</td>
</tr>
<tr>
<td></td>
<td>Rejeter Ho</td>
<td>Accepter Ho</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXPF</td>
<td>P.Value 0.0851</td>
<td>P.Value 0.3694</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nombre de retards : 3</td>
<td>Nombre de retards : 3</td>
<td>Ok</td>
<td>Ok</td>
</tr>
<tr>
<td></td>
<td>Rejeter Ho</td>
<td>Accepter Ho</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXPFT</td>
<td>P.Value 0.0549</td>
<td>P.Value 0.3730</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nombre de retards : 3</td>
<td>Nombre de retards : 3</td>
<td>Ok</td>
<td>Ok</td>
</tr>
<tr>
<td></td>
<td>Rejeter Ho</td>
<td>Accepter Ho</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Chapitre 4: Évaluation de la performance des indices d’inflation sous-jacentes

<table>
<thead>
<tr>
<th></th>
<th>P.Value</th>
<th>Nombre de retards</th>
<th>Action</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EXPFTH</td>
<td>0.0057</td>
<td>2</td>
<td>Rejeter Ho</td>
<td>Non</td>
</tr>
<tr>
<td></td>
<td>0.0312</td>
<td>2</td>
<td>Rejeter Ho</td>
<td></td>
</tr>
<tr>
<td>EXF</td>
<td>0.0770</td>
<td>3</td>
<td>Rejeter Ho</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.3561</td>
<td>3</td>
<td>Accepter Ho</td>
<td></td>
</tr>
<tr>
<td>WTM36</td>
<td>0.0925</td>
<td>3</td>
<td>Rejeter Ho</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.2506</td>
<td>3</td>
<td>Accepter Ho</td>
<td></td>
</tr>
<tr>
<td>WTM315</td>
<td>0.0574</td>
<td>3</td>
<td>Rejeter Ho</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.1882</td>
<td>3</td>
<td>Accepter Ho</td>
<td></td>
</tr>
<tr>
<td>WTM325</td>
<td>0.0107</td>
<td>1</td>
<td>Rejeter Ho</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0873</td>
<td>1</td>
<td>Rejeter Ho</td>
<td></td>
</tr>
<tr>
<td>WTM1010</td>
<td>0.1234</td>
<td>2</td>
<td>Accepter Ho</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.3083</td>
<td>2</td>
<td>Accepter Ho</td>
<td></td>
</tr>
<tr>
<td>WTM1515</td>
<td>0.0790</td>
<td>2</td>
<td>Rejeter Ho</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.2636</td>
<td>2</td>
<td>Accepter Ho</td>
<td></td>
</tr>
<tr>
<td>WTM1015</td>
<td>0.0485</td>
<td>2</td>
<td>Rejeter Ho</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.1813</td>
<td>2</td>
<td>Accepter Ho</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Rejeter Ho</th>
<th>Accepter Ho</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOWN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P.Value</td>
<td>0.0006</td>
<td>0.0277</td>
</tr>
<tr>
<td>Nombre de retards : 3</td>
<td>Nombre de retards : 3</td>
<td>Ok</td>
</tr>
<tr>
<td>Rejeter Ho</td>
<td>Rejeter Ho</td>
<td></td>
</tr>
<tr>
<td>WMEDIAN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P.Value</td>
<td>0.0007</td>
<td>0.0309</td>
</tr>
<tr>
<td>Nombre de retards : 2</td>
<td>Nombre de retards : 2</td>
<td>Ok</td>
</tr>
<tr>
<td>Rejeter Ho</td>
<td>Rejeter Ho</td>
<td></td>
</tr>
<tr>
<td>CORESVAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P.Value</td>
<td>0.3446</td>
<td>0.2618</td>
</tr>
<tr>
<td>Nombre de retards : 12</td>
<td>Nombre de retards : 12</td>
<td>Ok</td>
</tr>
<tr>
<td>Accepter Ho</td>
<td>Accepter Ho</td>
<td></td>
</tr>
<tr>
<td>COREUCM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P.Value</td>
<td>0.0683</td>
<td>0.1289</td>
</tr>
<tr>
<td>Nombre de retards : 3</td>
<td>Nombre de retards : 3</td>
<td>Ok</td>
</tr>
<tr>
<td>Rejeter Ho</td>
<td>Accepter Ho</td>
<td></td>
</tr>
<tr>
<td>DFI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P.Value</td>
<td>0.0005</td>
<td>0.1532</td>
</tr>
<tr>
<td>Nombre de retards : 3</td>
<td>Nombre de retards : 3</td>
<td>Ok</td>
</tr>
<tr>
<td>Rejeter Ho</td>
<td>Accepter Ho</td>
<td></td>
</tr>
<tr>
<td>CORECMT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P.Value</td>
<td>0.5613</td>
<td>0.3176</td>
</tr>
<tr>
<td>Nombre de retards : 3</td>
<td>Nombre de retards : 3</td>
<td>Ok</td>
</tr>
<tr>
<td>Accepter Ho</td>
<td>Accepter Ho</td>
<td></td>
</tr>
</tbody>
</table>
Annexe 8: VÉRIFIER LE TROISIÈME CRITÈRE

Tableau 36: TEST D’ANOVA

<table>
<thead>
<tr>
<th>Indice</th>
<th>$H_0: \bar{\pi} = \pi^f$</th>
<th>Satisfait</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXT</td>
<td>P.Value 0.8775</td>
<td>Ok</td>
</tr>
<tr>
<td></td>
<td>Accepter Ho</td>
<td></td>
</tr>
<tr>
<td>EXHP</td>
<td>P.Value 0.9493</td>
<td>Ok</td>
</tr>
<tr>
<td></td>
<td>Accepter Ho</td>
<td></td>
</tr>
<tr>
<td>EXHPFS</td>
<td>P.Value 0.5279</td>
<td>Ok</td>
</tr>
<tr>
<td></td>
<td>Accepter Ho</td>
<td></td>
</tr>
<tr>
<td>EXH</td>
<td>P.Value 0.7540</td>
<td>Ok</td>
</tr>
<tr>
<td></td>
<td>Accepter Ho</td>
<td></td>
</tr>
<tr>
<td>EXP</td>
<td>P.Value 0.1244</td>
<td>Ok</td>
</tr>
<tr>
<td></td>
<td>Accepter Ho</td>
<td></td>
</tr>
<tr>
<td>EXPF</td>
<td>P.Value 0.8557</td>
<td>Ok</td>
</tr>
<tr>
<td></td>
<td>Accepter Ho</td>
<td></td>
</tr>
<tr>
<td>EXPFT</td>
<td>P.Value 0.9189</td>
<td>Ok</td>
</tr>
<tr>
<td></td>
<td>Accepter Ho</td>
<td></td>
</tr>
<tr>
<td>EXPFTH</td>
<td>P.Value 0.6744</td>
<td>Ok</td>
</tr>
<tr>
<td></td>
<td>Accepter Ho</td>
<td></td>
</tr>
<tr>
<td>EXF</td>
<td>P.Value 0.4529</td>
<td>Ok</td>
</tr>
<tr>
<td></td>
<td>Accepter Ho</td>
<td></td>
</tr>
<tr>
<td>WTM36</td>
<td>P.Value 0.5754</td>
<td>Ok</td>
</tr>
<tr>
<td>Indice</td>
<td>P. Value</td>
<td>Accepter Ho</td>
</tr>
<tr>
<td>--------</td>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>WTM315</td>
<td>0.1473</td>
<td>OK</td>
</tr>
<tr>
<td>WTM325</td>
<td>0.0179</td>
<td>Non</td>
</tr>
<tr>
<td>WTM1010</td>
<td>0.7593</td>
<td>OK</td>
</tr>
<tr>
<td>WTM1515</td>
<td>0.7394</td>
<td>OK</td>
</tr>
<tr>
<td>WTM1015</td>
<td>0.4523</td>
<td>OK</td>
</tr>
<tr>
<td>DOWN</td>
<td>0.0119</td>
<td>Non</td>
</tr>
<tr>
<td>WMEDIAN</td>
<td>0.0118</td>
<td>Non</td>
</tr>
<tr>
<td>CORESVAR</td>
<td>0.9384</td>
<td>Ok</td>
</tr>
<tr>
<td>COREUCM</td>
<td>0.2355</td>
<td>Ok</td>
</tr>
<tr>
<td>DFI</td>
<td>0.8906</td>
<td>Ok</td>
</tr>
<tr>
<td>CORECMT</td>
<td>0.0008</td>
<td>Non</td>
</tr>
</tbody>
</table>
Annexe 9: VÉRIFIER LE QUATRIÈME CRITÈRE

Tableau 37: VARIANCE DES INDICES D’INFLATION

<table>
<thead>
<tr>
<th>Indice</th>
<th>Variance</th>
<th>Satisfait</th>
</tr>
</thead>
<tbody>
<tr>
<td>INF</td>
<td>39.0274</td>
<td></td>
</tr>
<tr>
<td>EXT</td>
<td>28.2464</td>
<td>Ok</td>
</tr>
<tr>
<td>EXHP</td>
<td>39.5309</td>
<td>Non</td>
</tr>
<tr>
<td>EXHPFS</td>
<td>21.6369</td>
<td>Ok</td>
</tr>
<tr>
<td>EXH</td>
<td>37.3047</td>
<td>Ok</td>
</tr>
<tr>
<td>EXP</td>
<td>30.1432</td>
<td>Ok</td>
</tr>
<tr>
<td>EXPF</td>
<td>15.0420</td>
<td>Ok</td>
</tr>
<tr>
<td>EXPFT</td>
<td>12.9741</td>
<td>Ok</td>
</tr>
<tr>
<td>EXPFTH</td>
<td>19.9446</td>
<td>Ok</td>
</tr>
<tr>
<td>EXF</td>
<td>14.2830</td>
<td>Ok</td>
</tr>
<tr>
<td>WTM36</td>
<td>33.0046</td>
<td>Ok</td>
</tr>
<tr>
<td>WTM315</td>
<td>30.5188</td>
<td>Ok</td>
</tr>
<tr>
<td>WTM325</td>
<td>25.9590</td>
<td>Ok</td>
</tr>
<tr>
<td>WTM1010</td>
<td>34.1034</td>
<td>Ok</td>
</tr>
<tr>
<td>WTM1515</td>
<td>34.0402</td>
<td>Ok</td>
</tr>
<tr>
<td>WTM1015</td>
<td>32.2165</td>
<td>Ok</td>
</tr>
<tr>
<td>DOWN</td>
<td>13.0798</td>
<td>Ok</td>
</tr>
<tr>
<td>WMEDIAN</td>
<td>13.0798</td>
<td>Ok</td>
</tr>
<tr>
<td>CORESVAR</td>
<td>33.4450</td>
<td>Ok</td>
</tr>
<tr>
<td>COREUCM</td>
<td>35.1988</td>
<td>Ok</td>
</tr>
<tr>
<td>DFI</td>
<td>21.917</td>
<td>Ok</td>
</tr>
<tr>
<td>CORECMT</td>
<td>42.0569</td>
<td>Non</td>
</tr>
</tbody>
</table>
Conclusion générale

Si le terme "d'inflation sous-jacente" est bien connu partout dans le monde, il est encore nouveau pour le Vietnam.

Si l'indice d'inflation sous-jacente est indispensable au bon fonctionnement de la politique monétaire partout dans le monde, la banque centrale du Vietnam n'en dispose pas encore\footnote{Cette constatation a été faite au moment où nous avons commencé cette thèse.}.

Plusieurs mesures de l'inflation sous-jacente ont été créées et estimées dans le monde, mais, au Vietnam, cela reste encore une question ouverte.

Rappelons que l'inflation est la perte du pouvoir d'achat de la monnaie qui se traduit par la hausse généralisée et durable des prix. Elle est populairesment mesurée par le taux d'inflation observée qui est le glissement mensuel ou annuel de l'indice des prix à la consommation. Cette mesure d'inflation présente l'inconvénient d'être fortement volatile à court terme. Elle peut être instable, souvent à cause de fortes fluctuations des prix des produits alimentaires ou des produits énergétiques. Du fait de cette instabilité de cet indice, les banques centrales peuvent éprouver des difficultés à apprécier correctement la situation de l'inflation et ses perspectives d'évolution. En outre, elle n'est pas complète dans le sens que le phénomène inflationniste couvre un champ plus large que celui de la consommation des ménages. De ce
fait, de nombreuses Banques Centrales ont intérêt à disposer d’une meilleure mesure des tensions inflationnistes globales. Il peut donc être utile de s’appuyer sur l’inflation sous-jacente.

L’inflation sous-jacente est plus adaptée à une formulation de la politique monétaire par rapport à l’inflation observée. Premièrement, elle constitue un meilleur outil pour analyser et guider les décisions de politique monétaire. Elle fournit effectivement les informations de l’inflation future. Deuxièmement, elle est un meilleur outil pour communiquer et expliquer la politique monétaire. Si l’on se réfère à l’inflation sous-jacente, la Banque centrale peut plus facilement susciter la compréhension envers sa politique. Grâce à ces avantages, l’inflation sous-jacente devient de plus en plus nécessaire. Elle est présente maintenant dans plusieurs économies à travers le monde.

Nous utilisons dans cette thèse différentes méthodes pour mesurer l’inflation sous-jacente du Vietnam. Nous utilisons tout d’abord des mesures purement statistiques. Ce sont la moyenne tronquée, les mesures d’exclusion, la médiane, la médiane pondérée et la méthode de pondération réduite. Ce choix
Conclusion générale

Finalement, les indices d’inflation sous-jacente obtenus sont examinés quant à leur utilité pour les responsables de la politique monétaire. L’indice COREUCM apparaît alors comme l’indice d’inflation sous-jacente le plus prédicatif et le plus pertinent pour apporter un éclairage sur la définition de la politique monétaire.

1. Résultats intuitifs de la thèse
Nous avons obtenu officiellement de ce travail, un ensemble de dix indices d’inflation sous-jacente qui satisfont à toutes les propriétés attendues et qui semblent optimaux pour la prévision d’inflation. Ces indices sont :

- Un indice d’inflation sous-jacente estimée à l’aide du modèle à composantes non observées (indice noté COREUCM dans la thèse).
- Un ensemble de cinq indices estimés à l’aide de la mesure d’exclusion (indices notés EXP, EXHPFS, EXF, EXPF et EXPFT dans la thèse).
- Un ensemble de quatre indices estimés à l’aide de la méthode de la moyenne tronquée (indices notés WTM36, WTM315, WTM1015, WTM1515 dans la thèse).

Un autre résultat de ce travail et qui va au-delà de nos attentes, est que parmi ces dix indices, l’un d’entre eux possède une double fonction, à savoir un indice prédicatif de l’inflation et un indice de référence de l’inflation. Cet indice est l’indice EXP, obtenu par élimination des variations des prix du groupe de bien POST. Cet indice possède un pouvoir prédicatif élevé et semble pouvoir être largement accepté par le grand public comme leur indice de référence. Une
fois que le ciblage de l’inflation est officiellement adopté au Vietnam73, un tel indice devrait avoir un rôle certain.

2. **Objectifs visés par cette thèse**

À travers cette thèse, nous avons étudié plusieurs mesures de l’inflation sous-jacente. Cette étude allant des différentes façons dont l’inflation sous-jacente est interprétée à l’examen approfondi de ces mesures dans le cas du Vietnam en passant par les méthodes permettant de l’extraire. Il résulte de ce travail non seulement les 10 indices d’inflation sous-jacente reportés ci-dessus mais encore des remarques concernant la technique d’estimation de l’inflation sous-jacente appropriée dans le cas du Vietnam. De notre point de vue, ces remarques sont un apport supplémentaire de notre travail.

- Le modèle à composantes non observées, d’après nous, est la mesure la plus favorable pour mesurer l’inflation sous-jacente pour le Vietnam. Différente des autres mesures, ce modèle ne demande pas une grande base de données. Sur ce point, le modèle convient très bien au Vietnam dont la base de données est encore très limitée. D’autre part, il est la seule mesure qui fournit un indice d’inflation sous-jacente pur. Enfin, l’inflation sous-jacente mesurée à l’aide de ce modèle possède le pouvoir prédictif le plus élevé.

Pourtant, les mécanismes macroéconomiques expliquant l’inflation à long terme ne sont pas présents dans l’élaboration du modèle à composantes non observées. Afin de capturer ces mécanismes, nous devons considérer deux

73 Le Comité économique de l’Assemblée du Vietnam a soumis un processus de mise en œuvre du ciblage de l’inflation dont les premiers pas seront faits à partir de 2015. Ce projet est en train d’être envisagé.
autres modélisations, à savoir le modèle SVAR et le modèle à tendances communes. Bien que ces modèles ne donnent pas ici des indices d’inflation sous-jacente optimaux, ils fournissent des informations importantes sur la détermination de l’inflation à long terme. Notamment, le modèle à tendances communes convient très bien aux analyses des déterminants de l’évolution fondamentale de l’inflation.

Pour les mesures statistiques, le point clé est la base de données utilisée qui doit être aussi détaillée que possible. Tandis que pour les mesures éconомétriques, le point clé porte sur la spécification du modèle. Le résultat de l’estimation de ces modèles est très sensible aux facteurs techniques comme : le choix des retards, le nombre d’observations, le nombre de variables explicative et nominale…

- L’évolution de l’inflation du Vietnam est très variée et la distribution des variations de prix est très asymétrique, donc, les mesures comme la médiane ou la médiane pondérée ne sont pas valides. Dans de tel cas, l’utilisation des mesures de moyennes tronquées semblent plus adaptées.

- Malgré la grande asymétrie de la distribution, il n’est pas nécessaire d’avoir recours à un taux de troncature élevé ou à un taux d’exclusion élevé pour les mesures de moyennes tronquées ainsi que les mesures d’exclusion. Avec un taux de troncature ou un taux d’exclusion faibles, ces mesures apparaissent également efficaces. Les indices EXP et WTM36 sont les preuves typiques de ce fait.

74 Pour le Vietnam, la mesure de pondération réduite n’est pas valide du fait d’une base de données trop limitée.
À l’aide des mesures statistiques, on peut obtenir un indice de l’inflation qui reflète l’évolution générale de l’inflation. À l’aide des mesures économétriques, on peut obtenir un indice de l’inflation qui reflète l’évolution persistante de l’inflation. Bien que les méthodologies de ces deux approches soient différentes, les résultats dans le cas du Vietnam sont assez homogènes. Il n’y a pas de distinction importante entre l’évolution générale et l’évolution persistante de l’inflation. Dans notre cas, la moyenne des écarts entre ces deux indices ce situe autour de 1%.

La mesure de l’exclusion est la mesure la plus simple à appliquer et c’est celle qui fournit le plus d’indices qui satisfont à nos attentes. Cependant, il s’avère quelle n’est pas si simple. Il est important de l’appliquer avec une grande précaution, notamment concernant le choix des éléments à exclure.

Par exemple, dans notre cas, les prix des biens à exclure sont toujours les indices de prix du groupe de FOOD et de FOODSTUFF. Leurs fréquences d’apparition dans la queue de la distribution sont relativement élevées et leurs variabilités sont souvent les plus importantes par rapport à celles des autres groupes. Ensuite, leurs dynamiques s’écartent relativement de celles des autres groupes et sont très biaisées par rapport à la dynamique du facteur commun du système des prix. Il semble que les évolutions de prix de ces deux groupes soient principalement dominées par les effets des chocs sectoriels. Pour capturer l’évolution générale des prix, l’évolution des prix de ces groupes de biens doit donc être exclue.

Pourtant, les prix de ces groupes sont également impactés par les chocs communs du système de prix, comme les autres groupes. D’autre part, une portion significative de l’évolution des prix de ces groupes peut être expliquée par ces chocs communs. Comme cela a été illustré par l’estimation du modèle à facteur commun, ce sont en effet les chocs communs qui impulent la
dynamique fondamentale des prix de ces groupes de biens. Une exclusion totale de ces deux groupes dans le calcul de l’inflation sous-jacente peut donc faire courir le risque d’omettre des informations concernant l’évolution générale du système de prix. Il est également important de noter que les prix de ces deux groupes de biens sont très sensibles aux chocs. L’effet des chocs est donc amplifié par l’évolution de ces prix. Dans une estimation du modèle à facteur dynamique, nous avons trouvé que le prix du groupe FOOD a fortement réagi aux chocs communs du système des prix avec un multiplicateur qui est de l’ordre de 8.6 (tandis que la moyenne des autres multiplicateurs est autour de 2.4).

À cet égard, les mesures de moyenne tronquée peuvent être la solution. Ces mesures sont plus flexibles car elles permettent d’appliquer des taux d’exclusion différents, au lieu d’appliquer qu’un taux unique et fixé à 100% comme dans les mesures d’exclusion.

Cette étude laisse encore quelques questions sans réponse satisfaisante. Comme avec l’inflation observée, il est difficile de voir apparaître des liens statistiques clairs entre l’inflation sous-jacente et la politique monétaire. Une piste de recherche sera donc d’essayer d’extraire une composante de l’inflation qui soit clairement statistiquement reliée à la politique monétaire, au moins dans le moyen et le long terme.

3. Perspectives

Conformément à nos conditions actuelles et à la limite de temps, nous avons fixé une charge de travail spécifique pour cette thèse. Pourtant, pour nous, ce sujet de recherche est simplement prospectif. Il nous reste encore une charge considérable de travail à faire ainsi que des perspectives à développer. Nous songeons en particulier à mesurer l’inflation sous-jacente avec un modèle à composantes non observées multi-variables dans lequel les chocs sont
corrélés, ou bien à exploiter les résultats obtenus dans cette thèse pour la construction d’un système de prévision d’inflation.

Cette section termine cette étude de thèse mais ne met pas un point final à ce travail de recherche ! Ceci n’est pas une fin, ceci est un commencement !
Bibliographie

Ball, L., & Mankiw, N. G. (1992(b)). Relative price changes as aggregate supply shocks. NBER Working Paper.

Bibliographie

Liste des figures

Figure 1: ÉVOLUTION HISTORIQUE DE L’INFLATION AU VIETNAM2
Figure 2: COMPARAISON DE L’INFLATION AU VIETNAM ET AUX AUTRES PAYS...4
Figure 3: INFLATION AU VIETNAM: L’ÉCART ENTRE PRÉVISION ET RÉALITÉ...19
Figure 4: ÉQUILIBRE MACROÉCONOMIQUE À LONG TERME32
Figure 5: COURBE D’OFFRE GLOBALE À LONG TERME.....................33
Figure 6: EFFETS D’UN CHOC D’OFFRE NÉGATIF DE COURT TERME ...34
Figure 7: EFFETS D’UN CHOC DE DEMANDE POSITIF35
Figure 8: EFFETS D’UN CHOC DE DEMANDE NÉGATIF36
Figure 9: DISTRIBUTION DES VARIATIONS DES PRIX41
Figure 10: HISTOGRAMME DE LA DISTRIBUTION DES VARIATIONS DE PRIX RELATIFS $f(e_t)$..42
Figure 11: PLANISPHERE DES PAYS QUI CALCULENT UN INDICATEUR D’INFLATION SOUS-JACENTE ..48
Figure 12: EFFETS DES CHOCS RELATIFS PERMANENTS59
Figure 13: PONDÉRATION DES SOUS-INDICES D’INFLATION73

Figure 14: LES TREIZE SOUS-INDICES DE PRIX DU VIETNAM (2009 :01 – 2013 :09) ..75

Figure 15: PROPRIÉTÉS DE LA DISTRIBUTION PONDERÉE...............76

Figure 16: HISTOGRAMES DES DISTRIBUTIONS ..82

Figure 17: INDICES D’INFLATION SOUS-JACENTE ESTIMÉS PAR LES MESURES D’EXCLUSION ...84

Figure 18: INDICES D’INFLATION SOUS-JACENTE ESTIMÉS PAR LES MOYENNES TRONQUÉES ...89

Figure 19: INDICE D’INFLATION SOUS-JACENTE ESTIMÉ PAR LA MESURE DE MÉDIANE PONDERÉE ...91

Figure 20: INDICE D’INFLATION SOUS-JACENTE ESTIMÉ PAR LA MESURE DE PONDÉRATION RÉDUITE ...92

Figure 21: INDICE D’INFLATION SOUS-JACENTE ESTIMÉ PAR LE MODÈLE À FACTEUR DYNAMIQUE ...98

Figure 22: DÉVELOPPEURS PRINCIPAUX DU MODÈLE SVAR QUAH ET VAHEY ...119

Figure 23: PRINCIPALES APPLICATIONS DU MODÈLE SVAR POUR MESURER L’INFLATION SOUS-JACENTE ...119

Figure 24: INDICE D’INFLATION SOUS-JACENTE ANNUELLE MESURÉ À L’AIDE DU MODÈLE SVAR DE QUAH-VAHEY ..125

Figure 25: INDICE D’INFLATION SOUS-JACENTE MENSUELLE MESURÉ À L’AIDE DU MODÈLE SVAR DE QUAH-VAHEY ..126
Figure 26: RÉPONSES IMPULSIONNELLES AUX CHOCS AVEC LE MODÈLE SVAR .. 128

Figure 27: PRODUCTION POTENTIELLE ET ÉCART DE PRODUCTION ESTIMÉES DU MODÈLE SVAR .. 131

Figure 28: INDICE D’INFLATION SOUS-JACENTE MESURÉ AVEC LE MODÈLE À TENDANCES COMMUNES .. 150

Figure 29: INDICE D’INFLATION TRANSITOIRE MESURÉ AVEC LE MODÈLE À TENDANCES COMMUNES .. 151

Figure 30: COURBE DE PHILLIPS – VERSION ORIGINALE .. 153

Figure 31: COURBE DE PHILLIPS DE LONG TERME .. 154

Figure 32: COMPOSANTES DE L’INFLATION- MESURÉES PAR LE MODÈLE À COMPOSANTES NON OBSERVABLES .. 166

Figure 33: COEFFICIENT DE L’ÉCART DE PRODUCTION .. 167

Figure 34: CONVERGENCE DU MODÈLE À COMPOSANTES NON OBSERVABLES .. 168

Figure 35: ERREUR DE PRÉDÉCITION .. 169

Figure 36: INDICE D’INFLATION SOUS-JACENTE MESURÉ À L’AIDE DU MODÈLE À COMPOSANTES NON OBSERVABLES .. 171

Figure 37: RELATION POSITIVE ENTRE L’ÉCART DE PRODUCTION ET L’INFLATION TRANSITOIRE .. 172

Figure 38: DIX INDICES D’INFLATION SOUS-JACENTE SATISFAITS 225
Liste des tableaux

Tableau 1: INFLATION ET INFLATION DES PRODUITS ALIMENTAIRES PENDANT LA PÉRIODE DE 1999 À 2001 ...6

Tableau 2: LA STRUCTURE DU PANIER DE CONSOMMATION DU VIETNAM ..14

Tableau 3: INFLATION AU VIETNAM: L’ÉCART ENTRE PRÉVISION ET RÉALITÉ ..18

Tableau 4: 13 SOUS-INDICES DE PRIX DU VIETNAM ..74

Tableau 5: MATRICES DES CORRÉLATIONS ..78

Tableau 6: PARAMÈTRES STATISTIQUES DES INDICES DE PRIX84

Tableau 7: MOYENNES ET ÉCARTS-TYPE DES INDICES D’INFLATION SOUS-JACENTE ESTIMÉS PAR L’EXCLUSION86

Tableau 8: PARAMÈTRES STATISTIQUES DES INDICES D’INFLATION ESTIMÉES PAR LES MOYENNES TRONQUÉES90

Tableau 9: NOUVELLES PONDÉRATIONS POUR DEUX SOUS-PÉRIODES. 93

Tableau 10 : JEU DE DONNÉES ...102

Tableau 11 : EXEMPLE DU CALCUL DE LA MOYENNE TRONQUÉE........104
Liste des tableaux

Tableau 12 : EXEMPLE DU CALCUL DE LA MÉDIANE PONDÉRÉE.........105
Tableau 13 : EXEMPLE DU CALCUL DE LA MESURE À PONDÉRATIONS RÉDUITES..106
Tableau 14: TEST DE Dickey Fuller augmenté pour la série INF123
Tableau 15: TEST DE Dickey Fuller augmenté pour la série DY 124
Tableau 16: TESTS DE JARQUE BERA DE NORMALITÉ DES RÉSIDUS DU MODÈLE SVAR..127
Tableau 17: ANALYSES D’AUTOCORRÉLATION DES RÉSIDUS DU MODÈLE SVAR..127
Tableau 18: DÉCOMPOSITION DE LA VARIANCE DE LA SÉRIE DY........129
Tableau 19: DÉCOMPOSITION DE LA VARIANCE DE LA SÉRIE INF........130
Tableau 20: TESTS DE Dickey Fuller augmentés143
Tableau 21: TEST DE LA TRACE SUR L’EXISTENCE ET LE NOMBRE DE RELATIONS DE COINTÉGRATION ...144
Tableau 22: TEST D’EXOGÉNEITÉ ET TEST D’EXCLUSION............145
Tableau 23: MATRICE DES IMPACTS À LONG TERME – ESTIMÉE DU MODÈLE À TENDANCES COMMUNES..147
Tableau 24: DÉCOMPOSITION DE LA VARIANCE DE LA SÉRIE DE PRIX DU PÉTROLE..148
Tableau 25: DÉCOMPOSITION DE LA VARIANCE DE LA SÉRIE DE PRODUCTION..149
Tableau 26: DÉCOMPOSITION DE LA VARIANCE DE LA SÉRIE D’INFLATION..149
Tableau 27: TESTS STATISTIQUES SUR LE MODÈLE À COMPOSANTES NON OBSERVABLES ... 169

Tableau 28: SYNTHÈSES DES INDICES D’INFLATION SOUS-JACENTE MESURÉS .. 190

Tableau 29: RÉSULTAT DU TEST DE BRYAN ET CECCHETTI 198

Tableau 30: CAPACITÉ PRÉDICTIVE .. 200

Tableau 31: TESTS D’ENVELOPPEMENT POUR UNE COMBINAISON DE PRÉVISION .. 201

Tableau 32: RÉSULTAT DU TEST DE COGLEY 203

Tableau 33: TESTS DE DICKEY FULLER AUGMENTÉ 208

Tableau 34: TESTS DE COINTÉGRATION ENTRE L’INFLATION OBSERVÉE ET L’INFLATION SOUS-JACENTE ... 211

Tableau 35: LA CAPACITÉ EXPLICATIVE DE L’INFLATION SOUS-JACENTE POUR L’INFLATION OBSERVÉE ... 215

Tableau 36: TEST D’ANOVA ... 219

Tableau 37: VARIANCE DES INDICES D’INFLATION 221
Liste des annexes

Annexe 1: EXEMPLE DU CALCUL DES MESURES STATISTIQUES 102
Annexe 2: ESTIMATION DU MODÈLE À FACTEUR DYNAMIQUE - \(y_i = 1 \) 107
Annexe 3: ESTIMATION DU MODÈLE À FACTEUR DYNAMIQUE - \(y_i \) LIBRES
Annexe 4: NOUVEAUX JEUX DE PONDÉRATIONS 109
Annexe 5: LES ABRÉVIATIONS DES INDICES D’INFLATION SOUS-
JACENTE ... 206
Annexe 6: VÉRIFIER LE PREMIER CRITÈRE 208
Annexe 7: VÉRIFIER LE DEUXIÈME CRITÈRE 216
Annexe 8: VÉRIFIER LE TROISIÈME CRITÈRE 219
Annexe 9: VÉRIFIER LE QUATRIÈME CRITÈRE 221